Swikriti Shrestha, Lauren T Jennings, Kyle Knofczynski, Sharath B Shivakumar, Quinn P Peterson
{"title":"利用干细胞衍生的α细胞模拟糖尿病α细胞功能障碍。","authors":"Swikriti Shrestha, Lauren T Jennings, Kyle Knofczynski, Sharath B Shivakumar, Quinn P Peterson","doi":"10.1016/j.stemcr.2025.102504","DOIUrl":null,"url":null,"abstract":"<p><p>Dysfunction of pancreatic alpha cells contributes to the pathophysiology of diabetes. Features of diabetic alpha cell dysfunction include glucagon hypersecretion, defects in proglucagon processing, and altered transcriptomic profile. The lack of an in vitro human alpha cell model has prevented the investigation, and potential correction, of these dysfunctional phenotypes. Here, we show that induction of endoplasmic reticulum (ER) stress in stem cell-derived alpha (SC-α) cells induces hypersecretion of glucagon. ER stress also increases the secretion of glicentin and the expression of glucagon-like peptide-1 (GLP-1), peptides produced by alternate cleavage of proglucagon by the prohormone convertase 1 (PC1/3) enzyme. Additionally, ER stress establishes a diabetic transcriptional state in SC-α cells characterized by downregulation of MAFB, as well as glycolysis and oxidative phosphorylation pathways. We show that sunitinib, a tyrosine kinase inhibitor, protects SC-α cells against the ER stress-induced glucagon hypersecretion phenotype. Thus, SC-α cell model can advance our knowledge of islets in health and diabetes.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"102504"},"PeriodicalIF":5.9000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12181959/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modeling diabetic alpha cell dysfunction using stem cell-derived alpha cells.\",\"authors\":\"Swikriti Shrestha, Lauren T Jennings, Kyle Knofczynski, Sharath B Shivakumar, Quinn P Peterson\",\"doi\":\"10.1016/j.stemcr.2025.102504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dysfunction of pancreatic alpha cells contributes to the pathophysiology of diabetes. Features of diabetic alpha cell dysfunction include glucagon hypersecretion, defects in proglucagon processing, and altered transcriptomic profile. The lack of an in vitro human alpha cell model has prevented the investigation, and potential correction, of these dysfunctional phenotypes. Here, we show that induction of endoplasmic reticulum (ER) stress in stem cell-derived alpha (SC-α) cells induces hypersecretion of glucagon. ER stress also increases the secretion of glicentin and the expression of glucagon-like peptide-1 (GLP-1), peptides produced by alternate cleavage of proglucagon by the prohormone convertase 1 (PC1/3) enzyme. Additionally, ER stress establishes a diabetic transcriptional state in SC-α cells characterized by downregulation of MAFB, as well as glycolysis and oxidative phosphorylation pathways. We show that sunitinib, a tyrosine kinase inhibitor, protects SC-α cells against the ER stress-induced glucagon hypersecretion phenotype. Thus, SC-α cell model can advance our knowledge of islets in health and diabetes.</p>\",\"PeriodicalId\":21885,\"journal\":{\"name\":\"Stem Cell Reports\",\"volume\":\" \",\"pages\":\"102504\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12181959/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cell Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.stemcr.2025.102504\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stemcr.2025.102504","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Modeling diabetic alpha cell dysfunction using stem cell-derived alpha cells.
Dysfunction of pancreatic alpha cells contributes to the pathophysiology of diabetes. Features of diabetic alpha cell dysfunction include glucagon hypersecretion, defects in proglucagon processing, and altered transcriptomic profile. The lack of an in vitro human alpha cell model has prevented the investigation, and potential correction, of these dysfunctional phenotypes. Here, we show that induction of endoplasmic reticulum (ER) stress in stem cell-derived alpha (SC-α) cells induces hypersecretion of glucagon. ER stress also increases the secretion of glicentin and the expression of glucagon-like peptide-1 (GLP-1), peptides produced by alternate cleavage of proglucagon by the prohormone convertase 1 (PC1/3) enzyme. Additionally, ER stress establishes a diabetic transcriptional state in SC-α cells characterized by downregulation of MAFB, as well as glycolysis and oxidative phosphorylation pathways. We show that sunitinib, a tyrosine kinase inhibitor, protects SC-α cells against the ER stress-induced glucagon hypersecretion phenotype. Thus, SC-α cell model can advance our knowledge of islets in health and diabetes.
期刊介绍:
Stem Cell Reports publishes high-quality, peer-reviewed research presenting conceptual or practical advances across the breadth of stem cell research and its applications to medicine. Our particular focus on shorter, single-point articles, timely publication, strong editorial decision-making and scientific input by leaders in the field and a "scoop protection" mechanism are reasons to submit your best papers.