Roshanara, Rati Tandon, Niti Puri, A Selvapandiyan
{"title":"LdCen1-LdDRP相互作用促进紫外线诱导的多诺瓦利什曼原虫DNA损伤修复的机制","authors":"Roshanara, Rati Tandon, Niti Puri, A Selvapandiyan","doi":"10.1007/s00430-025-00825-3","DOIUrl":null,"url":null,"abstract":"<p><p>Leishmania donovani is the causative agent of the fatal visceral leishmaniasis (VL) disease in humans in the tropical regions, mainly the Indian Subcontinent and Africa. We have previously described centrin1, a basal body associated cell division specific protein in this parasite important for the parasite's host intracellular stage. In this study, we identified a novel centrin1-binding protein called LdDRP through pull-down and MS/MS analysis, which is a homolog of the XPC protein of humans involved in DNA damage. The protein interaction with LdCen1 was also confirmed through peptide spectrum analysis against the UniProt database. Immunofluorescence analysis confirms that LdDRP is localized within the nucleus, suggesting the protein's possible role in DNA interaction. The overexpression of three LdDRP forms in the parasite, each fused with HA-tag (LdDRPF [full length] LdDRPN [only N-terminal], and LdDRPC [only C-terminal]), revealed that only LdDRPF and LdDRPC were able to support the retention of the parasite's shape and promote rapid division following the UV-damage recovery period. This was also correlated to the elevated expression level of both LdDRPC and LdCen1, by Western blot analysis soon after UV-C exposure in the parasites compared to control. The study emphasizes the role of the LdDRP, and its crucial domains involved in the DNA binding process, DNA damage response, and interaction with centrin, particularly in response to UV-C light-induced DNA damage.</p>","PeriodicalId":18369,"journal":{"name":"Medical Microbiology and Immunology","volume":"214 1","pages":"18"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistic insights into LdCen1-LdDRP interaction facilitating UV-induced DNA damage repair in Leishmania donovani.\",\"authors\":\"Roshanara, Rati Tandon, Niti Puri, A Selvapandiyan\",\"doi\":\"10.1007/s00430-025-00825-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Leishmania donovani is the causative agent of the fatal visceral leishmaniasis (VL) disease in humans in the tropical regions, mainly the Indian Subcontinent and Africa. We have previously described centrin1, a basal body associated cell division specific protein in this parasite important for the parasite's host intracellular stage. In this study, we identified a novel centrin1-binding protein called LdDRP through pull-down and MS/MS analysis, which is a homolog of the XPC protein of humans involved in DNA damage. The protein interaction with LdCen1 was also confirmed through peptide spectrum analysis against the UniProt database. Immunofluorescence analysis confirms that LdDRP is localized within the nucleus, suggesting the protein's possible role in DNA interaction. The overexpression of three LdDRP forms in the parasite, each fused with HA-tag (LdDRPF [full length] LdDRPN [only N-terminal], and LdDRPC [only C-terminal]), revealed that only LdDRPF and LdDRPC were able to support the retention of the parasite's shape and promote rapid division following the UV-damage recovery period. This was also correlated to the elevated expression level of both LdDRPC and LdCen1, by Western blot analysis soon after UV-C exposure in the parasites compared to control. The study emphasizes the role of the LdDRP, and its crucial domains involved in the DNA binding process, DNA damage response, and interaction with centrin, particularly in response to UV-C light-induced DNA damage.</p>\",\"PeriodicalId\":18369,\"journal\":{\"name\":\"Medical Microbiology and Immunology\",\"volume\":\"214 1\",\"pages\":\"18\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Microbiology and Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00430-025-00825-3\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Microbiology and Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00430-025-00825-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Mechanistic insights into LdCen1-LdDRP interaction facilitating UV-induced DNA damage repair in Leishmania donovani.
Leishmania donovani is the causative agent of the fatal visceral leishmaniasis (VL) disease in humans in the tropical regions, mainly the Indian Subcontinent and Africa. We have previously described centrin1, a basal body associated cell division specific protein in this parasite important for the parasite's host intracellular stage. In this study, we identified a novel centrin1-binding protein called LdDRP through pull-down and MS/MS analysis, which is a homolog of the XPC protein of humans involved in DNA damage. The protein interaction with LdCen1 was also confirmed through peptide spectrum analysis against the UniProt database. Immunofluorescence analysis confirms that LdDRP is localized within the nucleus, suggesting the protein's possible role in DNA interaction. The overexpression of three LdDRP forms in the parasite, each fused with HA-tag (LdDRPF [full length] LdDRPN [only N-terminal], and LdDRPC [only C-terminal]), revealed that only LdDRPF and LdDRPC were able to support the retention of the parasite's shape and promote rapid division following the UV-damage recovery period. This was also correlated to the elevated expression level of both LdDRPC and LdCen1, by Western blot analysis soon after UV-C exposure in the parasites compared to control. The study emphasizes the role of the LdDRP, and its crucial domains involved in the DNA binding process, DNA damage response, and interaction with centrin, particularly in response to UV-C light-induced DNA damage.
期刊介绍:
Medical Microbiology and Immunology (MMIM) publishes key findings on all aspects of the interrelationship between infectious agents and the immune system of their hosts. The journal´s main focus is original research work on intrinsic, innate or adaptive immune responses to viral, bacterial, fungal and parasitic (protozoan and helminthic) infections and on the virulence of the respective infectious pathogens.
MMIM covers basic, translational as well as clinical research in infectious diseases and infectious disease immunology. Basic research using cell cultures, organoid, and animal models are welcome, provided that the models have a clinical correlate and address a relevant medical question.
The journal also considers manuscripts on the epidemiology of infectious diseases, including the emergence and epidemic spreading of pathogens and the development of resistance to anti-infective therapies, and on novel vaccines and other innovative measurements of prevention.
The following categories of manuscripts will not be considered for publication in MMIM:
submissions of preliminary work, of merely descriptive data sets without investigation of mechanisms or of limited global interest,
manuscripts on existing or novel anti-infective compounds, which focus on pharmaceutical or pharmacological aspects of the drugs,
manuscripts on existing or modified vaccines, unless they report on experimental or clinical efficacy studies or provide new immunological information on their mode of action,
manuscripts on the diagnostics of infectious diseases, unless they offer a novel concept to solve a pending diagnostic problem,
case reports or case series, unless they are embedded in a study that focuses on the anti-infectious immune response and/or on the virulence of a pathogen.