靶向金黄色葡萄球菌SecA1非atp结合域的新型抑制剂的筛选

IF 1.9 4区 医学 Q3 CHEMISTRY, MEDICINAL
Yan Liu, Qing Su, Zonglin Wang, Peiyao Liu, Jinjin Hong, Hyuk-Kyu Seoh, Xu Jia, Sen-Fang Sui, Phang-Cheng Tai, Xinhe Huang
{"title":"靶向金黄色葡萄球菌SecA1非atp结合域的新型抑制剂的筛选","authors":"Yan Liu, Qing Su, Zonglin Wang, Peiyao Liu, Jinjin Hong, Hyuk-Kyu Seoh, Xu Jia, Sen-Fang Sui, Phang-Cheng Tai, Xinhe Huang","doi":"10.2174/0115734064370398250426162503","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong><i>Staphylococcus aureus (S. aureus)</i> has been one of the pathogenic bacteria for clinical infections, and there is an urgent need for the development of novel anti-<i>S. aureus</i> drugs. SecA is a conserved and essential protein in bacteria and is considered as an ideal target for development. Current screening of inhibitors against SecA has focused on the ATP-binding structural domain, which increases the risk of drug side effects, so a novel screening strategy based on the non-ATP-binding structural domain was chosen in this paper.</p><p><strong>Methods: </strong>A three-dimensional structural model of <i>S. aureus</i> SecA1N75 was constructed, and molecular docking was utilized to screen small molecules with strong interactions with the non- ATP binding domains from a compound library, and four candidate compounds were finally targeted. Molecular dynamics simulations of the candidate molecules were performed to evaluate their drug potential.</p><p><strong>Results: </strong>The four candidate compounds formed stable interactions with key residues of the SecA binding pocket. Molecular dynamics simulations further showed that the candidate molecules bound to the receptor in a stable conformation with nM-level inhibition constants, displaying potent SecA inhibitory activity. It lays the foundation of a lead compound for the development of antimicrobial drugs targeting SecA.</p><p><strong>Conclusion: </strong>In this thesis, an inhibitor screening strategy based on non-ATP binding structural domains was successfully constructed, which breaks through the limitations of traditional methods to screen candidate molecules with high activity and low risk of potential side effects, and provides an innovative solution to meet the challenge of <i>S. aureus</i> drug resistance.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Screening of Novel Inhibitors Targeting the Non-ATP-binding Domain of <i>Staphylococcus aureus</i> SecA1.\",\"authors\":\"Yan Liu, Qing Su, Zonglin Wang, Peiyao Liu, Jinjin Hong, Hyuk-Kyu Seoh, Xu Jia, Sen-Fang Sui, Phang-Cheng Tai, Xinhe Huang\",\"doi\":\"10.2174/0115734064370398250426162503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong><i>Staphylococcus aureus (S. aureus)</i> has been one of the pathogenic bacteria for clinical infections, and there is an urgent need for the development of novel anti-<i>S. aureus</i> drugs. SecA is a conserved and essential protein in bacteria and is considered as an ideal target for development. Current screening of inhibitors against SecA has focused on the ATP-binding structural domain, which increases the risk of drug side effects, so a novel screening strategy based on the non-ATP-binding structural domain was chosen in this paper.</p><p><strong>Methods: </strong>A three-dimensional structural model of <i>S. aureus</i> SecA1N75 was constructed, and molecular docking was utilized to screen small molecules with strong interactions with the non- ATP binding domains from a compound library, and four candidate compounds were finally targeted. Molecular dynamics simulations of the candidate molecules were performed to evaluate their drug potential.</p><p><strong>Results: </strong>The four candidate compounds formed stable interactions with key residues of the SecA binding pocket. Molecular dynamics simulations further showed that the candidate molecules bound to the receptor in a stable conformation with nM-level inhibition constants, displaying potent SecA inhibitory activity. It lays the foundation of a lead compound for the development of antimicrobial drugs targeting SecA.</p><p><strong>Conclusion: </strong>In this thesis, an inhibitor screening strategy based on non-ATP binding structural domains was successfully constructed, which breaks through the limitations of traditional methods to screen candidate molecules with high activity and low risk of potential side effects, and provides an innovative solution to meet the challenge of <i>S. aureus</i> drug resistance.</p>\",\"PeriodicalId\":18382,\"journal\":{\"name\":\"Medicinal Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734064370398250426162503\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734064370398250426162503","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:金黄色葡萄球菌(S. aureus)已成为临床感染的致病菌之一,迫切需要开发新型抗S. aureus的药物。葡萄球菌的药物。SecA是细菌中一种保守的必需蛋白,被认为是理想的发育靶点。目前对SecA抑制剂的筛选主要集中在atp结合结构域,这增加了药物副作用的风险,因此本文选择了一种新的基于非atp结合结构域的筛选策略。方法:构建金黄色葡萄球菌SecA1N75的三维结构模型,利用分子对接技术从化合物库中筛选与非ATP结合域具有强相互作用的小分子,最终筛选出4个候选化合物。对候选分子进行分子动力学模拟以评估其药物潜力。结果:4个候选化合物与SecA结合袋的关键残基形成稳定的相互作用。分子动力学模拟进一步表明,候选分子以稳定的构象与受体结合,具有纳米级的抑制常数,显示出强大的SecA抑制活性。这为开发针对SecA的抗菌药物的先导化合物奠定了基础。结论:本论文成功构建了基于非atp结合结构域的抑制剂筛选策略,突破了传统方法筛选高活性、低潜在副作用风险候选分子的局限性,为应对金黄色葡萄球菌耐药挑战提供了创新解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Screening of Novel Inhibitors Targeting the Non-ATP-binding Domain of Staphylococcus aureus SecA1.

Objective: Staphylococcus aureus (S. aureus) has been one of the pathogenic bacteria for clinical infections, and there is an urgent need for the development of novel anti-S. aureus drugs. SecA is a conserved and essential protein in bacteria and is considered as an ideal target for development. Current screening of inhibitors against SecA has focused on the ATP-binding structural domain, which increases the risk of drug side effects, so a novel screening strategy based on the non-ATP-binding structural domain was chosen in this paper.

Methods: A three-dimensional structural model of S. aureus SecA1N75 was constructed, and molecular docking was utilized to screen small molecules with strong interactions with the non- ATP binding domains from a compound library, and four candidate compounds were finally targeted. Molecular dynamics simulations of the candidate molecules were performed to evaluate their drug potential.

Results: The four candidate compounds formed stable interactions with key residues of the SecA binding pocket. Molecular dynamics simulations further showed that the candidate molecules bound to the receptor in a stable conformation with nM-level inhibition constants, displaying potent SecA inhibitory activity. It lays the foundation of a lead compound for the development of antimicrobial drugs targeting SecA.

Conclusion: In this thesis, an inhibitor screening strategy based on non-ATP binding structural domains was successfully constructed, which breaks through the limitations of traditional methods to screen candidate molecules with high activity and low risk of potential side effects, and provides an innovative solution to meet the challenge of S. aureus drug resistance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medicinal Chemistry
Medicinal Chemistry 医学-医药化学
CiteScore
4.30
自引率
4.30%
发文量
109
审稿时长
12 months
期刊介绍: Aims & Scope Medicinal Chemistry a peer-reviewed journal, aims to cover all the latest outstanding developments in medicinal chemistry and rational drug design. The journal publishes original research, mini-review articles and guest edited thematic issues covering recent research and developments in the field. Articles are published rapidly by taking full advantage of Internet technology for both the submission and peer review of manuscripts. Medicinal Chemistry is an essential journal for all involved in drug design and discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信