基于头颈癌实验数据的miRNA-mRNA相互作用预测工具的比较分析。

IF 1.1 Q2 MEDICINE, GENERAL & INTERNAL
Einstein-Sao Paulo Pub Date : 2025-04-18 eCollection Date: 2025-01-01 DOI:10.31744/einstein_journal/2025AO1372
Bárbara Dos Santos Dias, Larissa Figueiredo Alves Diniz, Lucca D'Arco Corrêa, Rafael Pereira de Souza, Leticia Torres Ferreira, Denise da Cunha Pasqualin, Rafael de Cicco, Eloiza Helena Tajara da Silva, Patricia Severino
{"title":"基于头颈癌实验数据的miRNA-mRNA相互作用预测工具的比较分析。","authors":"Bárbara Dos Santos Dias, Larissa Figueiredo Alves Diniz, Lucca D'Arco Corrêa, Rafael Pereira de Souza, Leticia Torres Ferreira, Denise da Cunha Pasqualin, Rafael de Cicco, Eloiza Helena Tajara da Silva, Patricia Severino","doi":"10.31744/einstein_journal/2025AO1372","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>We evaluated the performance of TargetScan, miRDB, and miRWalk for predicting miRNA-mRNA interactions in HNSCC. Based on clinical tumor and cancer-free tissue data, miRWalk emerged as the most comprehensive tool. Validation using NanoString technology and MiRTarBase confirmed key predictions, highlighting the important roles of the PI3K-Akt and Wnt pathways. This study underscores the importance of integrating bioinformatics and experimental data to better understand HNSCC.</p><p><strong>Background: </strong>■ miRWalk had the highest predicted interactions and validated miRNA networks in HNSCC.</p><p><strong>Background: </strong>■ Around 3.3% of interactions overlapped across tools, emphasizing the need for multitool approaches.</p><p><strong>Background: </strong>■ Dysregulated genes and miRNAs were tied to cancerdriving PI3K-Akt and Wnt pathways.</p><p><strong>Background: </strong>■ The validated approach highlights the importance of integrating computational and molecular data.</p><p><strong>Objective: </strong>Head and neck squamous cell carcinoma (HNSCC) has a poor prognosis largely due to late diagnosis and a lack of reliable biomarkers. MicroRNAs (miRNAs), small non-coding RNAs that regulate gene expression, are promising biomarkers for HNSCC. This study evaluated miRNA-mRNA interactions in HNSCC using conventional computational tools and validated the results using molecular data.</p><p><strong>Methods: </strong>We compared three miRNA-mRNA interaction prediction tools, TargetScan, miRDB, and miRWalk, using differentially expressed miRNAs and mRNAs from HNSCC and cancer-free tissues. NanoString nCounter was used to measure miRNA and mRNA expression and the miRTarBase database was used to validate the predicted miRNA-mRNA interactions.</p><p><strong>Results: </strong>TargetScan and miRWalk provide a comprehensive overview of potential interactions, whereas miRDB provides functional insights. Our results identified 77 and 154 differentially expressed miRNAs and mRNAs in HNSCC, respectively. miRWalk predicted the highest number of miRNA-mRNA interactions, followed by miRDB and TargetScan. Only 3.3% of interactions were common among the tools. The MiRTarBase analysis confirmed a small subset of the predictions. Biological pathway analysis highlighted the dysregulation of PI3K-Akt and Wnt signaling; miRWalk was the best for elucidating how miRNAs modulate target mRNAs in these key pathways during HNSCC progression.</p><p><strong>Conclusion: </strong>miRWalk emerged as the most robust tool for predicting miRNA-mRNA interactions. Our findings highlight the importance of integrating bioinformatics predictions with experimental data to better understand the regulatory networks in HNSCC and identify potential biomarkers for diagnosis and therapy.</p>","PeriodicalId":47359,"journal":{"name":"Einstein-Sao Paulo","volume":"23 ","pages":"eAO1372"},"PeriodicalIF":1.1000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12061445/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of miRNA-mRNA interaction prediction tools based on experimental head and neck cancer data.\",\"authors\":\"Bárbara Dos Santos Dias, Larissa Figueiredo Alves Diniz, Lucca D'Arco Corrêa, Rafael Pereira de Souza, Leticia Torres Ferreira, Denise da Cunha Pasqualin, Rafael de Cicco, Eloiza Helena Tajara da Silva, Patricia Severino\",\"doi\":\"10.31744/einstein_journal/2025AO1372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>We evaluated the performance of TargetScan, miRDB, and miRWalk for predicting miRNA-mRNA interactions in HNSCC. Based on clinical tumor and cancer-free tissue data, miRWalk emerged as the most comprehensive tool. Validation using NanoString technology and MiRTarBase confirmed key predictions, highlighting the important roles of the PI3K-Akt and Wnt pathways. This study underscores the importance of integrating bioinformatics and experimental data to better understand HNSCC.</p><p><strong>Background: </strong>■ miRWalk had the highest predicted interactions and validated miRNA networks in HNSCC.</p><p><strong>Background: </strong>■ Around 3.3% of interactions overlapped across tools, emphasizing the need for multitool approaches.</p><p><strong>Background: </strong>■ Dysregulated genes and miRNAs were tied to cancerdriving PI3K-Akt and Wnt pathways.</p><p><strong>Background: </strong>■ The validated approach highlights the importance of integrating computational and molecular data.</p><p><strong>Objective: </strong>Head and neck squamous cell carcinoma (HNSCC) has a poor prognosis largely due to late diagnosis and a lack of reliable biomarkers. MicroRNAs (miRNAs), small non-coding RNAs that regulate gene expression, are promising biomarkers for HNSCC. This study evaluated miRNA-mRNA interactions in HNSCC using conventional computational tools and validated the results using molecular data.</p><p><strong>Methods: </strong>We compared three miRNA-mRNA interaction prediction tools, TargetScan, miRDB, and miRWalk, using differentially expressed miRNAs and mRNAs from HNSCC and cancer-free tissues. NanoString nCounter was used to measure miRNA and mRNA expression and the miRTarBase database was used to validate the predicted miRNA-mRNA interactions.</p><p><strong>Results: </strong>TargetScan and miRWalk provide a comprehensive overview of potential interactions, whereas miRDB provides functional insights. Our results identified 77 and 154 differentially expressed miRNAs and mRNAs in HNSCC, respectively. miRWalk predicted the highest number of miRNA-mRNA interactions, followed by miRDB and TargetScan. Only 3.3% of interactions were common among the tools. The MiRTarBase analysis confirmed a small subset of the predictions. Biological pathway analysis highlighted the dysregulation of PI3K-Akt and Wnt signaling; miRWalk was the best for elucidating how miRNAs modulate target mRNAs in these key pathways during HNSCC progression.</p><p><strong>Conclusion: </strong>miRWalk emerged as the most robust tool for predicting miRNA-mRNA interactions. Our findings highlight the importance of integrating bioinformatics predictions with experimental data to better understand the regulatory networks in HNSCC and identify potential biomarkers for diagnosis and therapy.</p>\",\"PeriodicalId\":47359,\"journal\":{\"name\":\"Einstein-Sao Paulo\",\"volume\":\"23 \",\"pages\":\"eAO1372\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12061445/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Einstein-Sao Paulo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31744/einstein_journal/2025AO1372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Einstein-Sao Paulo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31744/einstein_journal/2025AO1372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:我们评估了TargetScan、miRDB和miRWalk预测HNSCC中miRNA-mRNA相互作用的性能。基于临床肿瘤和无癌组织数据,miRWalk成为最全面的工具。使用NanoString技术和MiRTarBase验证了关键预测,突出了PI3K-Akt和Wnt通路的重要作用。这项研究强调了将生物信息学和实验数据结合起来更好地理解HNSCC的重要性。miRWalk在HNSCC中具有最高的预测相互作用和验证的miRNA网络。背景:大约3.3%的交互在工具之间重叠,强调了对多工具方法的需求。背景:■失调基因和mirna与癌症驱动PI3K-Akt和Wnt通路相关。经过验证的方法强调了整合计算和分子数据的重要性。目的:头颈部鳞状细胞癌(HNSCC)预后较差,主要是由于诊断较晚和缺乏可靠的生物标志物。MicroRNAs (miRNAs)是一种调节基因表达的小非编码rna,是一种很有前途的HNSCC生物标志物。本研究使用传统的计算工具评估了HNSCC中miRNA-mRNA的相互作用,并使用分子数据验证了结果。方法:我们比较了三种miRNA-mRNA相互作用预测工具,TargetScan, miRDB和miRWalk,使用来自HNSCC和无癌组织的差异表达的mirna和mrna。使用NanoString nCounter测量miRNA和mRNA的表达,并使用miRTarBase数据库验证预测的miRNA-mRNA相互作用。结果:TargetScan和miRWalk提供了潜在相互作用的全面概述,而miRDB提供了功能见解。我们的研究结果在HNSCC中分别鉴定了77个和154个差异表达的mirna和mrna。miRWalk预测的miRNA-mRNA相互作用数量最多,其次是miRDB和TargetScan。工具之间只有3.3%的交互是常见的。MiRTarBase的分析证实了一小部分预测。生物学通路分析强调PI3K-Akt和Wnt信号的失调;miRWalk最适合阐明在HNSCC进展过程中,miRNAs如何调节这些关键通路中的靶mrna。结论:miRWalk是预测miRNA-mRNA相互作用最可靠的工具。我们的研究结果强调了将生物信息学预测与实验数据相结合的重要性,以更好地了解HNSCC的调控网络,并确定诊断和治疗的潜在生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative analysis of miRNA-mRNA interaction prediction tools based on experimental head and neck cancer data.

Background: We evaluated the performance of TargetScan, miRDB, and miRWalk for predicting miRNA-mRNA interactions in HNSCC. Based on clinical tumor and cancer-free tissue data, miRWalk emerged as the most comprehensive tool. Validation using NanoString technology and MiRTarBase confirmed key predictions, highlighting the important roles of the PI3K-Akt and Wnt pathways. This study underscores the importance of integrating bioinformatics and experimental data to better understand HNSCC.

Background: ■ miRWalk had the highest predicted interactions and validated miRNA networks in HNSCC.

Background: ■ Around 3.3% of interactions overlapped across tools, emphasizing the need for multitool approaches.

Background: ■ Dysregulated genes and miRNAs were tied to cancerdriving PI3K-Akt and Wnt pathways.

Background: ■ The validated approach highlights the importance of integrating computational and molecular data.

Objective: Head and neck squamous cell carcinoma (HNSCC) has a poor prognosis largely due to late diagnosis and a lack of reliable biomarkers. MicroRNAs (miRNAs), small non-coding RNAs that regulate gene expression, are promising biomarkers for HNSCC. This study evaluated miRNA-mRNA interactions in HNSCC using conventional computational tools and validated the results using molecular data.

Methods: We compared three miRNA-mRNA interaction prediction tools, TargetScan, miRDB, and miRWalk, using differentially expressed miRNAs and mRNAs from HNSCC and cancer-free tissues. NanoString nCounter was used to measure miRNA and mRNA expression and the miRTarBase database was used to validate the predicted miRNA-mRNA interactions.

Results: TargetScan and miRWalk provide a comprehensive overview of potential interactions, whereas miRDB provides functional insights. Our results identified 77 and 154 differentially expressed miRNAs and mRNAs in HNSCC, respectively. miRWalk predicted the highest number of miRNA-mRNA interactions, followed by miRDB and TargetScan. Only 3.3% of interactions were common among the tools. The MiRTarBase analysis confirmed a small subset of the predictions. Biological pathway analysis highlighted the dysregulation of PI3K-Akt and Wnt signaling; miRWalk was the best for elucidating how miRNAs modulate target mRNAs in these key pathways during HNSCC progression.

Conclusion: miRWalk emerged as the most robust tool for predicting miRNA-mRNA interactions. Our findings highlight the importance of integrating bioinformatics predictions with experimental data to better understand the regulatory networks in HNSCC and identify potential biomarkers for diagnosis and therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Einstein-Sao Paulo
Einstein-Sao Paulo MEDICINE, GENERAL & INTERNAL-
CiteScore
2.00
自引率
0.00%
发文量
210
审稿时长
38 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信