Qianyu Guo, William Yang, Guy Robinson, Keyur Chaludiya, Aisha N Abdulkadir, Falguni Ghosh Roy, Divya Shivakumar, Ayesha N Ahmad, Sarki A Abdulkadir, Austin N Kirschner
{"title":"MYC抑制在神经内分泌恶性肿瘤中的放射增敏潜力","authors":"Qianyu Guo, William Yang, Guy Robinson, Keyur Chaludiya, Aisha N Abdulkadir, Falguni Ghosh Roy, Divya Shivakumar, Ayesha N Ahmad, Sarki A Abdulkadir, Austin N Kirschner","doi":"10.1016/j.ijrobp.2025.04.034","DOIUrl":null,"url":null,"abstract":"<p><p>The MYC family of transcription factors-comprising c-MYC, N-MYC, and L-MYC-plays a pivotal role in oncogenesis, driving cancer progression and resistance to therapy. While MYC proteins have long been considered challenging drug targets due to their intricate structures, recent advances have led to the development of promising inhibitors. This review explores the role of MYC overexpression in promoting radiation therapy resistance in aggressive neuroendocrine malignancies through multiple mechanisms, including increased tumor cell invasion, enhanced DNA damage repair and oxidative stress management, prosurvival autophagy, survival of circulating tumor cells, angiogenesis, awakening from dormancy, and modulation of chronic inflammation and host immunity. Paradoxically, MYC overexpression can also enhance radiosensitivity in certain cancer cells by driving proapoptotic pathways, such as reactive oxygen species-induced DNA damage that overwhelms cellular repair mechanisms, ultimately leading to cell death. Additionally, we provide a comprehensive summary of direct MYC inhibitors, detailing their current stage of preclinical and clinical development as novel anticancer therapeutics. This review highlights the role of MYC in cancer metastasis and radiation therapy resistance while examining the potential of MYC inhibitors as radiosensitizers in adult and pediatric neuroendocrine malignancies, including small cell lung cancer, large cell neuroendocrine lung cancer, Merkel cell carcinoma, neuroendocrine-differentiated prostate cancer, neuroblastoma, central nervous system embryonal tumors, and medulloblastoma.</p>","PeriodicalId":14215,"journal":{"name":"International Journal of Radiation Oncology Biology Physics","volume":" ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking the Radiosensitizing Potential of MYC Inhibition in Neuroendocrine Malignancies.\",\"authors\":\"Qianyu Guo, William Yang, Guy Robinson, Keyur Chaludiya, Aisha N Abdulkadir, Falguni Ghosh Roy, Divya Shivakumar, Ayesha N Ahmad, Sarki A Abdulkadir, Austin N Kirschner\",\"doi\":\"10.1016/j.ijrobp.2025.04.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The MYC family of transcription factors-comprising c-MYC, N-MYC, and L-MYC-plays a pivotal role in oncogenesis, driving cancer progression and resistance to therapy. While MYC proteins have long been considered challenging drug targets due to their intricate structures, recent advances have led to the development of promising inhibitors. This review explores the role of MYC overexpression in promoting radiation therapy resistance in aggressive neuroendocrine malignancies through multiple mechanisms, including increased tumor cell invasion, enhanced DNA damage repair and oxidative stress management, prosurvival autophagy, survival of circulating tumor cells, angiogenesis, awakening from dormancy, and modulation of chronic inflammation and host immunity. Paradoxically, MYC overexpression can also enhance radiosensitivity in certain cancer cells by driving proapoptotic pathways, such as reactive oxygen species-induced DNA damage that overwhelms cellular repair mechanisms, ultimately leading to cell death. Additionally, we provide a comprehensive summary of direct MYC inhibitors, detailing their current stage of preclinical and clinical development as novel anticancer therapeutics. This review highlights the role of MYC in cancer metastasis and radiation therapy resistance while examining the potential of MYC inhibitors as radiosensitizers in adult and pediatric neuroendocrine malignancies, including small cell lung cancer, large cell neuroendocrine lung cancer, Merkel cell carcinoma, neuroendocrine-differentiated prostate cancer, neuroblastoma, central nervous system embryonal tumors, and medulloblastoma.</p>\",\"PeriodicalId\":14215,\"journal\":{\"name\":\"International Journal of Radiation Oncology Biology Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Radiation Oncology Biology Physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijrobp.2025.04.034\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Radiation Oncology Biology Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ijrobp.2025.04.034","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Unlocking the Radiosensitizing Potential of MYC Inhibition in Neuroendocrine Malignancies.
The MYC family of transcription factors-comprising c-MYC, N-MYC, and L-MYC-plays a pivotal role in oncogenesis, driving cancer progression and resistance to therapy. While MYC proteins have long been considered challenging drug targets due to their intricate structures, recent advances have led to the development of promising inhibitors. This review explores the role of MYC overexpression in promoting radiation therapy resistance in aggressive neuroendocrine malignancies through multiple mechanisms, including increased tumor cell invasion, enhanced DNA damage repair and oxidative stress management, prosurvival autophagy, survival of circulating tumor cells, angiogenesis, awakening from dormancy, and modulation of chronic inflammation and host immunity. Paradoxically, MYC overexpression can also enhance radiosensitivity in certain cancer cells by driving proapoptotic pathways, such as reactive oxygen species-induced DNA damage that overwhelms cellular repair mechanisms, ultimately leading to cell death. Additionally, we provide a comprehensive summary of direct MYC inhibitors, detailing their current stage of preclinical and clinical development as novel anticancer therapeutics. This review highlights the role of MYC in cancer metastasis and radiation therapy resistance while examining the potential of MYC inhibitors as radiosensitizers in adult and pediatric neuroendocrine malignancies, including small cell lung cancer, large cell neuroendocrine lung cancer, Merkel cell carcinoma, neuroendocrine-differentiated prostate cancer, neuroblastoma, central nervous system embryonal tumors, and medulloblastoma.
期刊介绍:
International Journal of Radiation Oncology • Biology • Physics (IJROBP), known in the field as the Red Journal, publishes original laboratory and clinical investigations related to radiation oncology, radiation biology, medical physics, and both education and health policy as it relates to the field.
This journal has a particular interest in original contributions of the following types: prospective clinical trials, outcomes research, and large database interrogation. In addition, it seeks reports of high-impact innovations in single or combined modality treatment, tumor sensitization, normal tissue protection (including both precision avoidance and pharmacologic means), brachytherapy, particle irradiation, and cancer imaging. Technical advances related to dosimetry and conformal radiation treatment planning are of interest, as are basic science studies investigating tumor physiology and the molecular biology underlying cancer and normal tissue radiation response.