Angelique D Gonzalez, Yannick N Wadop, Benjamin Danner, Kyra M Clarke, Matthew B Dopler, Ali Ghaseminejad-Bandpey, Sahana Babu, Julie Parker-Garza, Cole Corbett, Mohammad Alhneif, Mallory Keating, Kevin F Bieniek, Gladys E Maestre, Sudha Seshadri, Shahroo Etemadmoghadam, Bernard Fongang, Margaret E Flanagan
{"title":"数字病理学在tau研究中的应用:QuPath和HALO的比较。","authors":"Angelique D Gonzalez, Yannick N Wadop, Benjamin Danner, Kyra M Clarke, Matthew B Dopler, Ali Ghaseminejad-Bandpey, Sahana Babu, Julie Parker-Garza, Cole Corbett, Mohammad Alhneif, Mallory Keating, Kevin F Bieniek, Gladys E Maestre, Sudha Seshadri, Shahroo Etemadmoghadam, Bernard Fongang, Margaret E Flanagan","doi":"10.1093/jnen/nlaf026","DOIUrl":null,"url":null,"abstract":"<p><p>The application of digital pathology tools has expanded in recent years, but non-neoplastic human brain tissue presents unique challenges due to its complexity. This study evaluated HALO and QuPath tau quantification performance in the hippocampus and mid-frontal gyrus across various tauopathies. Percent positivity emerged as the most reliable measure, showing strong correlations with Braak stages and CERAD scores, outperforming object and optical densities. QuPath demonstrated superior correlations with Braak stages, while HALO excelled in aligning with CERAD scoring. However, HALO's optical density was less consistent. Paired t-tests revealed significant differences in object and optical densities between platforms, though percent positivity was consistent across both. QuPath's threshold-based object density showed similar agreement with manual counts compared to HALO's AI-dependent approach (all ρ > 0.70). Reanalysis of QuPath further improved its agreement with manual measurements and correlations with Braak and CERAD scores (all ρ > 0.70). HALO offers a user-friendly interface and excels in certain metrics but is hindered by frequent software malfunctions and more limited flexibility. In contrast, QuPath's customizable workflows and superior performance in Braak staging make it more suitable for advanced and larger-scale analyses. Overall, our study highlights the strengths and limitations of these platforms, helping guide their application in neuropathology.</p>","PeriodicalId":16682,"journal":{"name":"Journal of Neuropathology and Experimental Neurology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Digital pathology in tau research: A comparison of QuPath and HALO.\",\"authors\":\"Angelique D Gonzalez, Yannick N Wadop, Benjamin Danner, Kyra M Clarke, Matthew B Dopler, Ali Ghaseminejad-Bandpey, Sahana Babu, Julie Parker-Garza, Cole Corbett, Mohammad Alhneif, Mallory Keating, Kevin F Bieniek, Gladys E Maestre, Sudha Seshadri, Shahroo Etemadmoghadam, Bernard Fongang, Margaret E Flanagan\",\"doi\":\"10.1093/jnen/nlaf026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The application of digital pathology tools has expanded in recent years, but non-neoplastic human brain tissue presents unique challenges due to its complexity. This study evaluated HALO and QuPath tau quantification performance in the hippocampus and mid-frontal gyrus across various tauopathies. Percent positivity emerged as the most reliable measure, showing strong correlations with Braak stages and CERAD scores, outperforming object and optical densities. QuPath demonstrated superior correlations with Braak stages, while HALO excelled in aligning with CERAD scoring. However, HALO's optical density was less consistent. Paired t-tests revealed significant differences in object and optical densities between platforms, though percent positivity was consistent across both. QuPath's threshold-based object density showed similar agreement with manual counts compared to HALO's AI-dependent approach (all ρ > 0.70). Reanalysis of QuPath further improved its agreement with manual measurements and correlations with Braak and CERAD scores (all ρ > 0.70). HALO offers a user-friendly interface and excels in certain metrics but is hindered by frequent software malfunctions and more limited flexibility. In contrast, QuPath's customizable workflows and superior performance in Braak staging make it more suitable for advanced and larger-scale analyses. Overall, our study highlights the strengths and limitations of these platforms, helping guide their application in neuropathology.</p>\",\"PeriodicalId\":16682,\"journal\":{\"name\":\"Journal of Neuropathology and Experimental Neurology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuropathology and Experimental Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jnen/nlaf026\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuropathology and Experimental Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jnen/nlaf026","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Digital pathology in tau research: A comparison of QuPath and HALO.
The application of digital pathology tools has expanded in recent years, but non-neoplastic human brain tissue presents unique challenges due to its complexity. This study evaluated HALO and QuPath tau quantification performance in the hippocampus and mid-frontal gyrus across various tauopathies. Percent positivity emerged as the most reliable measure, showing strong correlations with Braak stages and CERAD scores, outperforming object and optical densities. QuPath demonstrated superior correlations with Braak stages, while HALO excelled in aligning with CERAD scoring. However, HALO's optical density was less consistent. Paired t-tests revealed significant differences in object and optical densities between platforms, though percent positivity was consistent across both. QuPath's threshold-based object density showed similar agreement with manual counts compared to HALO's AI-dependent approach (all ρ > 0.70). Reanalysis of QuPath further improved its agreement with manual measurements and correlations with Braak and CERAD scores (all ρ > 0.70). HALO offers a user-friendly interface and excels in certain metrics but is hindered by frequent software malfunctions and more limited flexibility. In contrast, QuPath's customizable workflows and superior performance in Braak staging make it more suitable for advanced and larger-scale analyses. Overall, our study highlights the strengths and limitations of these platforms, helping guide their application in neuropathology.
期刊介绍:
Journal of Neuropathology & Experimental Neurology is the official journal of the American Association of Neuropathologists, Inc. (AANP). The journal publishes peer-reviewed studies on neuropathology and experimental neuroscience, book reviews, letters, and Association news, covering a broad spectrum of fields in basic neuroscience with an emphasis on human neurological diseases. It is written by and for neuropathologists, neurologists, neurosurgeons, pathologists, psychiatrists, and basic neuroscientists from around the world. Publication has been continuous since 1942.