{"title":"GRB14:通过PI3K/AKT信号通路与COBLL1相互作用驱动胃癌肿瘤进展的预后生物标志物。","authors":"Chun-Bin Gu, Chuang Wang","doi":"10.1515/biol-2025-1084","DOIUrl":null,"url":null,"abstract":"<p><p>Gastric cancer (GC) is a prevalent malignancy with a high incidence rate. Growth factor receptor-bound protein 14 (GRB14) is crucial in cell signal transduction and is associated with tumor growth, invasion, and metastasis. The aim of this study is to investigate the impact of GRB14 on GC growth and metastasis. GRB14 expression and prognosis in GC tissues were analyzed using bioinformatics. The GC cell lines, SGC-7901, MGC-803, BGC-823, and normal gastric epithelial cell line (GES-1) were used in this study. Cell viability, cycle progression, and apoptosis were assessed via CCK-8 and flow cytometry. The colony formation, transwell, and wound-healing assays were conducted to evaluate cell proliferation, invasion, and migration. Protein levels involved in the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway were analyzed by Western blot. GRB14 expression was significantly higher in GC tissues than adjacent healthy tissues, correlating with poor prognosis. GRB14 knockdown promoted apoptosis and inhibited cell growth, invasion, and migration, while its overexpression exhibited opposite effects. GRB14 directly interacted with cordon-bleu WH2 repeat protein like 1, facilitating PI3K/AKT signaling in GC cells. This study highlights GRB14's critical role in GC progression and suggests its potential as a therapeutic target.</p>","PeriodicalId":19605,"journal":{"name":"Open Life Sciences","volume":"20 1","pages":"20251084"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12048902/pdf/","citationCount":"0","resultStr":"{\"title\":\"GRB14: A prognostic biomarker driving tumor progression in gastric cancer through the PI3K/AKT signaling pathway by interacting with COBLL1.\",\"authors\":\"Chun-Bin Gu, Chuang Wang\",\"doi\":\"10.1515/biol-2025-1084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gastric cancer (GC) is a prevalent malignancy with a high incidence rate. Growth factor receptor-bound protein 14 (GRB14) is crucial in cell signal transduction and is associated with tumor growth, invasion, and metastasis. The aim of this study is to investigate the impact of GRB14 on GC growth and metastasis. GRB14 expression and prognosis in GC tissues were analyzed using bioinformatics. The GC cell lines, SGC-7901, MGC-803, BGC-823, and normal gastric epithelial cell line (GES-1) were used in this study. Cell viability, cycle progression, and apoptosis were assessed via CCK-8 and flow cytometry. The colony formation, transwell, and wound-healing assays were conducted to evaluate cell proliferation, invasion, and migration. Protein levels involved in the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway were analyzed by Western blot. GRB14 expression was significantly higher in GC tissues than adjacent healthy tissues, correlating with poor prognosis. GRB14 knockdown promoted apoptosis and inhibited cell growth, invasion, and migration, while its overexpression exhibited opposite effects. GRB14 directly interacted with cordon-bleu WH2 repeat protein like 1, facilitating PI3K/AKT signaling in GC cells. This study highlights GRB14's critical role in GC progression and suggests its potential as a therapeutic target.</p>\",\"PeriodicalId\":19605,\"journal\":{\"name\":\"Open Life Sciences\",\"volume\":\"20 1\",\"pages\":\"20251084\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12048902/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1515/biol-2025-1084\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/biol-2025-1084","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
GRB14: A prognostic biomarker driving tumor progression in gastric cancer through the PI3K/AKT signaling pathway by interacting with COBLL1.
Gastric cancer (GC) is a prevalent malignancy with a high incidence rate. Growth factor receptor-bound protein 14 (GRB14) is crucial in cell signal transduction and is associated with tumor growth, invasion, and metastasis. The aim of this study is to investigate the impact of GRB14 on GC growth and metastasis. GRB14 expression and prognosis in GC tissues were analyzed using bioinformatics. The GC cell lines, SGC-7901, MGC-803, BGC-823, and normal gastric epithelial cell line (GES-1) were used in this study. Cell viability, cycle progression, and apoptosis were assessed via CCK-8 and flow cytometry. The colony formation, transwell, and wound-healing assays were conducted to evaluate cell proliferation, invasion, and migration. Protein levels involved in the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway were analyzed by Western blot. GRB14 expression was significantly higher in GC tissues than adjacent healthy tissues, correlating with poor prognosis. GRB14 knockdown promoted apoptosis and inhibited cell growth, invasion, and migration, while its overexpression exhibited opposite effects. GRB14 directly interacted with cordon-bleu WH2 repeat protein like 1, facilitating PI3K/AKT signaling in GC cells. This study highlights GRB14's critical role in GC progression and suggests its potential as a therapeutic target.
期刊介绍:
Open Life Sciences (previously Central European Journal of Biology) is a fast growing peer-reviewed journal, devoted to scholarly research in all areas of life sciences, such as molecular biology, plant science, biotechnology, cell biology, biochemistry, biophysics, microbiology and virology, ecology, differentiation and development, genetics and many others. Open Life Sciences assures top quality of published data through critical peer review and editorial involvement throughout the whole publication process. Thanks to the Open Access model of publishing, it also offers unrestricted access to published articles for all users.