Emma V Waters, Sarah K Cameron, Gemma C Langridge, Andrew Preston
{"title":"细菌基因组结构变异:流行、机制和后果。","authors":"Emma V Waters, Sarah K Cameron, Gemma C Langridge, Andrew Preston","doi":"10.1016/j.tim.2025.04.004","DOIUrl":null,"url":null,"abstract":"<p><p>A vast number of bacterial genome sequences are publicly available. However, the majority were generated using short-read sequencing, producing fragmented assemblies. Long-read sequencing can generate closed assemblies, and they reveal that bacterial genome structure, the order and orientation of genes on the chromosome, is highly variable for many species. Growing evidence suggests that genome structure is a determinant of genome-wide gene expression levels and thus phenotype. We review this developing picture of genome structure variation among bacteria, the challenges for the study of this phenomenon, and its impact on adaptation and evolution, including virulence and infection.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":" ","pages":""},"PeriodicalIF":14.0000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bacterial genome structural variation: prevalence, mechanisms, and consequences.\",\"authors\":\"Emma V Waters, Sarah K Cameron, Gemma C Langridge, Andrew Preston\",\"doi\":\"10.1016/j.tim.2025.04.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A vast number of bacterial genome sequences are publicly available. However, the majority were generated using short-read sequencing, producing fragmented assemblies. Long-read sequencing can generate closed assemblies, and they reveal that bacterial genome structure, the order and orientation of genes on the chromosome, is highly variable for many species. Growing evidence suggests that genome structure is a determinant of genome-wide gene expression levels and thus phenotype. We review this developing picture of genome structure variation among bacteria, the challenges for the study of this phenomenon, and its impact on adaptation and evolution, including virulence and infection.</p>\",\"PeriodicalId\":23275,\"journal\":{\"name\":\"Trends in Microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tim.2025.04.004\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tim.2025.04.004","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Bacterial genome structural variation: prevalence, mechanisms, and consequences.
A vast number of bacterial genome sequences are publicly available. However, the majority were generated using short-read sequencing, producing fragmented assemblies. Long-read sequencing can generate closed assemblies, and they reveal that bacterial genome structure, the order and orientation of genes on the chromosome, is highly variable for many species. Growing evidence suggests that genome structure is a determinant of genome-wide gene expression levels and thus phenotype. We review this developing picture of genome structure variation among bacteria, the challenges for the study of this phenomenon, and its impact on adaptation and evolution, including virulence and infection.
期刊介绍:
Trends in Microbiology serves as a comprehensive, multidisciplinary forum for discussing various aspects of microbiology, spanning cell biology, immunology, genetics, evolution, virology, bacteriology, protozoology, and mycology. In the rapidly evolving field of microbiology, technological advancements, especially in genome sequencing, impact prokaryote biology from pathogens to extremophiles, influencing developments in drugs, vaccines, and industrial enzyme research.