脑疾病基因治疗的mr指导:从姑息治疗到治愈。

IF 3.3 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Dalton H Bermudez, Thomas Lilieholm, Walter F Block
{"title":"脑疾病基因治疗的mr指导:从姑息治疗到治愈。","authors":"Dalton H Bermudez, Thomas Lilieholm, Walter F Block","doi":"10.1002/jmri.29804","DOIUrl":null,"url":null,"abstract":"<p><p>Regulatory bodies in the U.S. and Europe recently approved a gene therapy for aromatic L-amino acid decarboxylase (AADC) deficiency, a rare neurologic disorder where a genetic mutation prevents dopamine production in the brain. Affected children fail to develop normal motor and cognitive functions. MRI-guided intraparenchymal delivery of AADC gene therapy to localized gray matter regions-specifically the substantia nigra and ventral tegmental area-has enabled the brain to produce dopamine, resulting in dramatic improvements in physical and cognitive outcomes. The need to target only a small brain region simplifies the surgical approach. However, gene therapy for broader neurodegenerative conditions has progressed more slowly than expected, despite significant global investment. Clinical efficacy depends heavily on the accurate delivery of gene therapeutics via direct brain infusion, cerebrospinal fluid (CSF) administration, or both. Inadequate image guidance during clinical trials makes it difficult to distinguish between true drug inefficacy and delivery failure. We highlight how increasing use of MRI for pre-surgical simulation and real-time therapy monitoring is accelerating gene therapy development for neurological diseases. This manuscript explores MRI's role in guiding intraparenchymal gene delivery, particularly using Convection Enhanced Delivery (CED). MRI contributes across the treatment timeline-from pre-surgical planning and infusion guidance to validating therapeutic coverage. We describe how MRI supports controlled therapeutic distribution for localized treatments and its potential to enable broader distributions needed for correcting widespread genetic anomalies. We also detail how structural and anatomical MRI sequences (T1, T2, Time of Flight, and Diffusion Tensor Imaging (DTI)) can help model likely infusion distributions. Finally, we provide an outlook on how advanced DTI-based algorithms and poroelastic theory could further improve modeling of infusion dynamics. Current MRI-based technologies can be integrated and enhanced to improve CED effectiveness, especially in very young pediatric patients. EVIDENCE LEVEL: 1. TECHNICAL EFFICACY: Stage 4.</p>","PeriodicalId":16140,"journal":{"name":"Journal of Magnetic Resonance Imaging","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MR-Guidance of Gene Therapy for Brain Diseases: Moving From Palliative Treatment to Cures.\",\"authors\":\"Dalton H Bermudez, Thomas Lilieholm, Walter F Block\",\"doi\":\"10.1002/jmri.29804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Regulatory bodies in the U.S. and Europe recently approved a gene therapy for aromatic L-amino acid decarboxylase (AADC) deficiency, a rare neurologic disorder where a genetic mutation prevents dopamine production in the brain. Affected children fail to develop normal motor and cognitive functions. MRI-guided intraparenchymal delivery of AADC gene therapy to localized gray matter regions-specifically the substantia nigra and ventral tegmental area-has enabled the brain to produce dopamine, resulting in dramatic improvements in physical and cognitive outcomes. The need to target only a small brain region simplifies the surgical approach. However, gene therapy for broader neurodegenerative conditions has progressed more slowly than expected, despite significant global investment. Clinical efficacy depends heavily on the accurate delivery of gene therapeutics via direct brain infusion, cerebrospinal fluid (CSF) administration, or both. Inadequate image guidance during clinical trials makes it difficult to distinguish between true drug inefficacy and delivery failure. We highlight how increasing use of MRI for pre-surgical simulation and real-time therapy monitoring is accelerating gene therapy development for neurological diseases. This manuscript explores MRI's role in guiding intraparenchymal gene delivery, particularly using Convection Enhanced Delivery (CED). MRI contributes across the treatment timeline-from pre-surgical planning and infusion guidance to validating therapeutic coverage. We describe how MRI supports controlled therapeutic distribution for localized treatments and its potential to enable broader distributions needed for correcting widespread genetic anomalies. We also detail how structural and anatomical MRI sequences (T1, T2, Time of Flight, and Diffusion Tensor Imaging (DTI)) can help model likely infusion distributions. Finally, we provide an outlook on how advanced DTI-based algorithms and poroelastic theory could further improve modeling of infusion dynamics. Current MRI-based technologies can be integrated and enhanced to improve CED effectiveness, especially in very young pediatric patients. EVIDENCE LEVEL: 1. TECHNICAL EFFICACY: Stage 4.</p>\",\"PeriodicalId\":16140,\"journal\":{\"name\":\"Journal of Magnetic Resonance Imaging\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnetic Resonance Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/jmri.29804\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetic Resonance Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jmri.29804","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

美国和欧洲的监管机构最近批准了一种针对芳香l -氨基酸脱羧酶(AADC)缺乏症的基因疗法,这是一种罕见的神经系统疾病,基因突变阻止了大脑中多巴胺的产生。受影响的儿童不能发展正常的运动和认知功能。mri引导下的AADC基因治疗在脑实质内传递到局部灰质区域,特别是黑质和腹侧被盖区,使大脑产生多巴胺,导致身体和认知结果的显着改善。只需瞄准一个小的大脑区域,简化了手术方法。然而,尽管全球投入了大量资金,但更广泛的神经退行性疾病的基因治疗进展比预期的要慢。临床疗效在很大程度上取决于通过直接脑输注、脑脊液(CSF)给药或两者同时进行的基因治疗的准确递送。在临床试验中,不充分的图像引导使得很难区分真正的药物无效和给药失败。我们强调越来越多地使用MRI进行术前模拟和实时治疗监测是如何加速神经系统疾病的基因治疗发展的。本文探讨了MRI在指导肺实质内基因传递中的作用,特别是使用对流增强传递(CED)。MRI在整个治疗过程中都有贡献——从术前计划和输液指导到治疗覆盖的验证。我们描述了MRI如何支持局部治疗的控制治疗分布,以及它在纠正广泛的遗传异常所需的更广泛分布方面的潜力。我们还详细介绍了结构和解剖MRI序列(T1、T2、飞行时间和弥散张量成像(DTI))如何帮助模拟可能的输液分布。最后,我们展望了基于dti的先进算法和孔隙弹性理论如何进一步改进输注动力学建模。目前基于mri的技术可以整合和增强,以提高CED的有效性,特别是在非常年轻的儿科患者中。证据等级:1。技术功效:第4阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MR-Guidance of Gene Therapy for Brain Diseases: Moving From Palliative Treatment to Cures.

Regulatory bodies in the U.S. and Europe recently approved a gene therapy for aromatic L-amino acid decarboxylase (AADC) deficiency, a rare neurologic disorder where a genetic mutation prevents dopamine production in the brain. Affected children fail to develop normal motor and cognitive functions. MRI-guided intraparenchymal delivery of AADC gene therapy to localized gray matter regions-specifically the substantia nigra and ventral tegmental area-has enabled the brain to produce dopamine, resulting in dramatic improvements in physical and cognitive outcomes. The need to target only a small brain region simplifies the surgical approach. However, gene therapy for broader neurodegenerative conditions has progressed more slowly than expected, despite significant global investment. Clinical efficacy depends heavily on the accurate delivery of gene therapeutics via direct brain infusion, cerebrospinal fluid (CSF) administration, or both. Inadequate image guidance during clinical trials makes it difficult to distinguish between true drug inefficacy and delivery failure. We highlight how increasing use of MRI for pre-surgical simulation and real-time therapy monitoring is accelerating gene therapy development for neurological diseases. This manuscript explores MRI's role in guiding intraparenchymal gene delivery, particularly using Convection Enhanced Delivery (CED). MRI contributes across the treatment timeline-from pre-surgical planning and infusion guidance to validating therapeutic coverage. We describe how MRI supports controlled therapeutic distribution for localized treatments and its potential to enable broader distributions needed for correcting widespread genetic anomalies. We also detail how structural and anatomical MRI sequences (T1, T2, Time of Flight, and Diffusion Tensor Imaging (DTI)) can help model likely infusion distributions. Finally, we provide an outlook on how advanced DTI-based algorithms and poroelastic theory could further improve modeling of infusion dynamics. Current MRI-based technologies can be integrated and enhanced to improve CED effectiveness, especially in very young pediatric patients. EVIDENCE LEVEL: 1. TECHNICAL EFFICACY: Stage 4.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.70
自引率
6.80%
发文量
494
审稿时长
2 months
期刊介绍: The Journal of Magnetic Resonance Imaging (JMRI) is an international journal devoted to the timely publication of basic and clinical research, educational and review articles, and other information related to the diagnostic applications of magnetic resonance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信