Xiangen Liu, Yujuan Qi, Tao Zhu, Xiaoyue Ding, Dianshuang Zhou, Conghui Han
{"title":"丁酸盐改善高脂肪饮食引起的睾丸生精功能障碍。","authors":"Xiangen Liu, Yujuan Qi, Tao Zhu, Xiaoyue Ding, Dianshuang Zhou, Conghui Han","doi":"10.21037/tau-2024-660","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Obesity is closely associated with low male fertility and decreased sperm quality. Obesity is accompanied by an ecological imbalance in the gut microbiota, so it is of great significance to intervene in male infertility caused by obesity from the perspective of gut microbiota metabolites. This study aimed to evaluate the efficacy of butyrate in ameliorating obesity-induced spermatogenic dysfunction and to explore the potential molecular mechanisms.</p><p><strong>Methods: </strong>This study explored the role of butyrate in recovering the dysfunctions of spermatogenesis caused by obesity by inducing an obese model of male mice with a high-fat diet (HFD). The effects of HFD and butyrate on testicular function were explored based on metabolomics.</p><p><strong>Results: </strong>The results of the study showed that HFD caused a decrease in sperm count, a decrease in sperm motility, and an increase in sperm malformation rate in mice. After adding butyrate to the HFD, the various sperm indicators of mice were significantly improved. Through the analysis of metabolomics data from mouse testes, this study found that an HFD significantly altered the metabolic status of mice testes, involving multiple metabolic pathways. However, after adding butyrate, some metabolic characteristics tended to be similar to those of normal diet mice, and the steroid biosynthesis and primary bile acid biosynthesis pathways were significantly improved.</p><p><strong>Conclusions: </strong>This study clarified the effect of butyrate on improving sperm quality, providing experimental evidence for the treatment of obesity-induced abnormal spermatogenesis with butyrate.</p>","PeriodicalId":23270,"journal":{"name":"Translational andrology and urology","volume":"14 3","pages":"627-636"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11986523/pdf/","citationCount":"0","resultStr":"{\"title\":\"Butyrate improves testicular spermatogenic dysfunction induced by a high-fat diet.\",\"authors\":\"Xiangen Liu, Yujuan Qi, Tao Zhu, Xiaoyue Ding, Dianshuang Zhou, Conghui Han\",\"doi\":\"10.21037/tau-2024-660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Obesity is closely associated with low male fertility and decreased sperm quality. Obesity is accompanied by an ecological imbalance in the gut microbiota, so it is of great significance to intervene in male infertility caused by obesity from the perspective of gut microbiota metabolites. This study aimed to evaluate the efficacy of butyrate in ameliorating obesity-induced spermatogenic dysfunction and to explore the potential molecular mechanisms.</p><p><strong>Methods: </strong>This study explored the role of butyrate in recovering the dysfunctions of spermatogenesis caused by obesity by inducing an obese model of male mice with a high-fat diet (HFD). The effects of HFD and butyrate on testicular function were explored based on metabolomics.</p><p><strong>Results: </strong>The results of the study showed that HFD caused a decrease in sperm count, a decrease in sperm motility, and an increase in sperm malformation rate in mice. After adding butyrate to the HFD, the various sperm indicators of mice were significantly improved. Through the analysis of metabolomics data from mouse testes, this study found that an HFD significantly altered the metabolic status of mice testes, involving multiple metabolic pathways. However, after adding butyrate, some metabolic characteristics tended to be similar to those of normal diet mice, and the steroid biosynthesis and primary bile acid biosynthesis pathways were significantly improved.</p><p><strong>Conclusions: </strong>This study clarified the effect of butyrate on improving sperm quality, providing experimental evidence for the treatment of obesity-induced abnormal spermatogenesis with butyrate.</p>\",\"PeriodicalId\":23270,\"journal\":{\"name\":\"Translational andrology and urology\",\"volume\":\"14 3\",\"pages\":\"627-636\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11986523/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational andrology and urology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.21037/tau-2024-660\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ANDROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational andrology and urology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/tau-2024-660","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ANDROLOGY","Score":null,"Total":0}
Butyrate improves testicular spermatogenic dysfunction induced by a high-fat diet.
Background: Obesity is closely associated with low male fertility and decreased sperm quality. Obesity is accompanied by an ecological imbalance in the gut microbiota, so it is of great significance to intervene in male infertility caused by obesity from the perspective of gut microbiota metabolites. This study aimed to evaluate the efficacy of butyrate in ameliorating obesity-induced spermatogenic dysfunction and to explore the potential molecular mechanisms.
Methods: This study explored the role of butyrate in recovering the dysfunctions of spermatogenesis caused by obesity by inducing an obese model of male mice with a high-fat diet (HFD). The effects of HFD and butyrate on testicular function were explored based on metabolomics.
Results: The results of the study showed that HFD caused a decrease in sperm count, a decrease in sperm motility, and an increase in sperm malformation rate in mice. After adding butyrate to the HFD, the various sperm indicators of mice were significantly improved. Through the analysis of metabolomics data from mouse testes, this study found that an HFD significantly altered the metabolic status of mice testes, involving multiple metabolic pathways. However, after adding butyrate, some metabolic characteristics tended to be similar to those of normal diet mice, and the steroid biosynthesis and primary bile acid biosynthesis pathways were significantly improved.
Conclusions: This study clarified the effect of butyrate on improving sperm quality, providing experimental evidence for the treatment of obesity-induced abnormal spermatogenesis with butyrate.
期刊介绍:
ranslational Andrology and Urology (Print ISSN 2223-4683; Online ISSN 2223-4691; Transl Androl Urol; TAU) is an open access, peer-reviewed, bi-monthly journal (quarterly published from Mar.2012 - Dec. 2014). The main focus of the journal is to describe new findings in the field of translational research of Andrology and Urology, provides current and practical information on basic research and clinical investigations of Andrology and Urology. Specific areas of interest include, but not limited to, molecular study, pathology, biology and technical advances related to andrology and urology. Topics cover range from evaluation, prevention, diagnosis, therapy, prognosis, rehabilitation and future challenges to urology and andrology. Contributions pertinent to urology and andrology are also included from related fields such as public health, basic sciences, education, sociology, and nursing.