Abderrahmen Chargui, Imen Hammami, Abeer Hashem, Amal A Al-Hazzani, Elsayed Fathi Abd Allah, Amin Belaid, Salem Marzougui, Michèle V Elmay, Baharia Mograbi
{"title":"Cd通过赖氨酸-63连接泛素化作用稳定HIF-1α,诱导内质网应激和细胞增殖。","authors":"Abderrahmen Chargui, Imen Hammami, Abeer Hashem, Amal A Al-Hazzani, Elsayed Fathi Abd Allah, Amin Belaid, Salem Marzougui, Michèle V Elmay, Baharia Mograbi","doi":"10.1007/s43188-024-00266-9","DOIUrl":null,"url":null,"abstract":"<p><p>Cadmium, a carcinogenic and toxic substance released into the environment, has emerged as a potent activator of lysine-63 ubiquitination, and lysine-63 is a crucial regulator of signal transduction pathways. Although critical, very little information is currently available about how the activation of lysine 63 ubiquitination by Cd might contribute to cancers and inflammatory diseases. The present study provides the first evidence that Cd stabilizes hypoxia-inducible factor-1-alpha, a transcription factor, under normoxic conditions via lysine 63 ubiquitination. Cd induces the accumulation of lysine 63 polyubiquitinated proteins. Importantly, Cd-induced ubiquitination does not prevent oxidative damage or proteasome impairment. Instead, we demonstrated that Cd activates lysine 63 ubiquitination and amplifies its accumulation by overloading the capacity of the autophagy pathway, thus promoting endoplasmic reticulum stress and cell death. At the molecular level, Cd-induced lysine 63 polyubiquitination is correlated with the stabilization of hypoxia-inducible factor-1-alpha, which translocates into the nucleus and promotes the expression of oncogenes such as interleukin 8 and vascular endothelial growth factor. Strikingly, prolonged cell exposure to high Cd concentrations induces increased lysine-63 polyubiquitination, which promotes aggresome formation, thus preventing this protein from interacting with its downstream nuclear targets. Our results showed that Cd is an activator of K63-linked ubiquitination that stabilizes and promotes the accumulation of HIF-1α, which blocks autophagy, thus resulting in endoplasmic reticulum stress. In addition, a small amount of HIF-1α was observed in the nucleus. We therefore propose that the aberrant activation of lysine 63 polyubiquitination by the carcinogen Cd could promote cell proliferation and inflammation at low levels, while high levels lead to cell death.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s43188-024-00266-9.</p>","PeriodicalId":23181,"journal":{"name":"Toxicological Research","volume":"41 3","pages":"221-234"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12021772/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cd stabilizes HIF-1α under normoxic conditions via lysine-63-linked ubiquitination and induces ER stress and cell proliferation.\",\"authors\":\"Abderrahmen Chargui, Imen Hammami, Abeer Hashem, Amal A Al-Hazzani, Elsayed Fathi Abd Allah, Amin Belaid, Salem Marzougui, Michèle V Elmay, Baharia Mograbi\",\"doi\":\"10.1007/s43188-024-00266-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cadmium, a carcinogenic and toxic substance released into the environment, has emerged as a potent activator of lysine-63 ubiquitination, and lysine-63 is a crucial regulator of signal transduction pathways. Although critical, very little information is currently available about how the activation of lysine 63 ubiquitination by Cd might contribute to cancers and inflammatory diseases. The present study provides the first evidence that Cd stabilizes hypoxia-inducible factor-1-alpha, a transcription factor, under normoxic conditions via lysine 63 ubiquitination. Cd induces the accumulation of lysine 63 polyubiquitinated proteins. Importantly, Cd-induced ubiquitination does not prevent oxidative damage or proteasome impairment. Instead, we demonstrated that Cd activates lysine 63 ubiquitination and amplifies its accumulation by overloading the capacity of the autophagy pathway, thus promoting endoplasmic reticulum stress and cell death. At the molecular level, Cd-induced lysine 63 polyubiquitination is correlated with the stabilization of hypoxia-inducible factor-1-alpha, which translocates into the nucleus and promotes the expression of oncogenes such as interleukin 8 and vascular endothelial growth factor. Strikingly, prolonged cell exposure to high Cd concentrations induces increased lysine-63 polyubiquitination, which promotes aggresome formation, thus preventing this protein from interacting with its downstream nuclear targets. Our results showed that Cd is an activator of K63-linked ubiquitination that stabilizes and promotes the accumulation of HIF-1α, which blocks autophagy, thus resulting in endoplasmic reticulum stress. In addition, a small amount of HIF-1α was observed in the nucleus. We therefore propose that the aberrant activation of lysine 63 polyubiquitination by the carcinogen Cd could promote cell proliferation and inflammation at low levels, while high levels lead to cell death.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s43188-024-00266-9.</p>\",\"PeriodicalId\":23181,\"journal\":{\"name\":\"Toxicological Research\",\"volume\":\"41 3\",\"pages\":\"221-234\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12021772/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicological Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s43188-024-00266-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s43188-024-00266-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Cd stabilizes HIF-1α under normoxic conditions via lysine-63-linked ubiquitination and induces ER stress and cell proliferation.
Cadmium, a carcinogenic and toxic substance released into the environment, has emerged as a potent activator of lysine-63 ubiquitination, and lysine-63 is a crucial regulator of signal transduction pathways. Although critical, very little information is currently available about how the activation of lysine 63 ubiquitination by Cd might contribute to cancers and inflammatory diseases. The present study provides the first evidence that Cd stabilizes hypoxia-inducible factor-1-alpha, a transcription factor, under normoxic conditions via lysine 63 ubiquitination. Cd induces the accumulation of lysine 63 polyubiquitinated proteins. Importantly, Cd-induced ubiquitination does not prevent oxidative damage or proteasome impairment. Instead, we demonstrated that Cd activates lysine 63 ubiquitination and amplifies its accumulation by overloading the capacity of the autophagy pathway, thus promoting endoplasmic reticulum stress and cell death. At the molecular level, Cd-induced lysine 63 polyubiquitination is correlated with the stabilization of hypoxia-inducible factor-1-alpha, which translocates into the nucleus and promotes the expression of oncogenes such as interleukin 8 and vascular endothelial growth factor. Strikingly, prolonged cell exposure to high Cd concentrations induces increased lysine-63 polyubiquitination, which promotes aggresome formation, thus preventing this protein from interacting with its downstream nuclear targets. Our results showed that Cd is an activator of K63-linked ubiquitination that stabilizes and promotes the accumulation of HIF-1α, which blocks autophagy, thus resulting in endoplasmic reticulum stress. In addition, a small amount of HIF-1α was observed in the nucleus. We therefore propose that the aberrant activation of lysine 63 polyubiquitination by the carcinogen Cd could promote cell proliferation and inflammation at low levels, while high levels lead to cell death.
Supplementary information: The online version contains supplementary material available at 10.1007/s43188-024-00266-9.
期刊介绍:
Toxicological Research is the official journal of the Korean Society of Toxicology. The journal covers all areas of Toxicological Research of chemicals, drugs and environmental agents affecting human and animals, which in turn impact public health. The journal’s mission is to disseminate scientific and technical information on diverse areas of toxicological research. Contributions by toxicologists, molecular biologists, geneticists, biochemists, pharmacologists, clinical researchers and epidemiologists with a global view on public health through toxicological research are welcome. Emphasis will be given to articles providing an understanding of the toxicological mechanisms affecting animal, human and public health. In the case of research articles using natural extracts, detailed information with respect to the origin, extraction method, chemical profiles, and characterization of standard compounds to ensure the reproducible pharmacological activity should be provided.