{"title":"粉碎的冲击:了解油菜科油料作物的硅质和硅质开裂。","authors":"Justin B Nichol, Shakshi A Dutt, Marcus A Samuel","doi":"10.1002/pld3.70058","DOIUrl":null,"url":null,"abstract":"<p><p>Silique dehiscence, despite being an essential physiological process for seed dispersal for dehiscent fruits, is disadvantageous for the agricultural industry. While crops have been selected against the expression of natural, spontaneous shattering to protect the seeds for harvest, fruit dehiscence in the field can be promoted through abiotic factors such as wind, drought, and hail that can be detrimental in reducing crop yield and profitability. In crops like canola, pennycress, and <i>Camelina</i>, this impact could be as high as 50%, creating economic losses for both the industry and the economy. Mitigating the effects of fruit dehiscence is crucial to prevent seed loss, economic loss, and the persistence of volunteer plants, which interfere with crop rotation and require increased weed control. Developing agronomic traits through genetic manipulation to enhance the strength of the fruiting body can prevent seed dispersal mechanisms from occurring and boost yield efficiency and preservation. Current research into this area has created mutant plants with indehiscent fruits by reducing allele function that determines the identity of the various anatomical layers of the fruit. Future genetic approaches may focus on strengthening siliques by enhancing secondary cell walls through either increased lignification or reducing cell wall-degrading enzymes to achieve shatter tolerance. This review focuses on improving our knowledge within members of the Brassicaceae family to create a better understanding of silique/silicle dehiscence for researchers to establish a groundwork for broader applications across diverse crops. This knowledge will directly lead to improved agricultural productivity and ensure a stable food supply, addressing global challenges the world is facing.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":"9 4","pages":"e70058"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11994477/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Shock of Shatter: Understanding Silique and Silicle Dehiscence for Improving Oilseed Crops in Brassicaceae.\",\"authors\":\"Justin B Nichol, Shakshi A Dutt, Marcus A Samuel\",\"doi\":\"10.1002/pld3.70058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Silique dehiscence, despite being an essential physiological process for seed dispersal for dehiscent fruits, is disadvantageous for the agricultural industry. While crops have been selected against the expression of natural, spontaneous shattering to protect the seeds for harvest, fruit dehiscence in the field can be promoted through abiotic factors such as wind, drought, and hail that can be detrimental in reducing crop yield and profitability. In crops like canola, pennycress, and <i>Camelina</i>, this impact could be as high as 50%, creating economic losses for both the industry and the economy. Mitigating the effects of fruit dehiscence is crucial to prevent seed loss, economic loss, and the persistence of volunteer plants, which interfere with crop rotation and require increased weed control. Developing agronomic traits through genetic manipulation to enhance the strength of the fruiting body can prevent seed dispersal mechanisms from occurring and boost yield efficiency and preservation. Current research into this area has created mutant plants with indehiscent fruits by reducing allele function that determines the identity of the various anatomical layers of the fruit. Future genetic approaches may focus on strengthening siliques by enhancing secondary cell walls through either increased lignification or reducing cell wall-degrading enzymes to achieve shatter tolerance. This review focuses on improving our knowledge within members of the Brassicaceae family to create a better understanding of silique/silicle dehiscence for researchers to establish a groundwork for broader applications across diverse crops. This knowledge will directly lead to improved agricultural productivity and ensure a stable food supply, addressing global challenges the world is facing.</p>\",\"PeriodicalId\":20230,\"journal\":{\"name\":\"Plant Direct\",\"volume\":\"9 4\",\"pages\":\"e70058\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11994477/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Direct\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pld3.70058\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pld3.70058","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
The Shock of Shatter: Understanding Silique and Silicle Dehiscence for Improving Oilseed Crops in Brassicaceae.
Silique dehiscence, despite being an essential physiological process for seed dispersal for dehiscent fruits, is disadvantageous for the agricultural industry. While crops have been selected against the expression of natural, spontaneous shattering to protect the seeds for harvest, fruit dehiscence in the field can be promoted through abiotic factors such as wind, drought, and hail that can be detrimental in reducing crop yield and profitability. In crops like canola, pennycress, and Camelina, this impact could be as high as 50%, creating economic losses for both the industry and the economy. Mitigating the effects of fruit dehiscence is crucial to prevent seed loss, economic loss, and the persistence of volunteer plants, which interfere with crop rotation and require increased weed control. Developing agronomic traits through genetic manipulation to enhance the strength of the fruiting body can prevent seed dispersal mechanisms from occurring and boost yield efficiency and preservation. Current research into this area has created mutant plants with indehiscent fruits by reducing allele function that determines the identity of the various anatomical layers of the fruit. Future genetic approaches may focus on strengthening siliques by enhancing secondary cell walls through either increased lignification or reducing cell wall-degrading enzymes to achieve shatter tolerance. This review focuses on improving our knowledge within members of the Brassicaceae family to create a better understanding of silique/silicle dehiscence for researchers to establish a groundwork for broader applications across diverse crops. This knowledge will directly lead to improved agricultural productivity and ensure a stable food supply, addressing global challenges the world is facing.
期刊介绍:
Plant Direct is a monthly, sound science journal for the plant sciences that gives prompt and equal consideration to papers reporting work dealing with a variety of subjects. Topics include but are not limited to genetics, biochemistry, development, cell biology, biotic stress, abiotic stress, genomics, phenomics, bioinformatics, physiology, molecular biology, and evolution. A collaborative journal launched by the American Society of Plant Biologists, the Society for Experimental Biology and Wiley, Plant Direct publishes papers submitted directly to the journal as well as those referred from a select group of the societies’ journals.