{"title":"抗生素作用,药物传递,生物降解性,外科缝合线和尖端外科缝合线制造技术的伤口再生特性。","authors":"Hye-Ree Han","doi":"10.3390/jfb16040135","DOIUrl":null,"url":null,"abstract":"<p><p>(1) Background: With the emergence of various super bacteria, interest in antibacterial properties, drug delivery, and wound regeneration is increasing in the field of surgical materials. There are many studies on surgical sutures, but not many recent ones that have studied structurally subdivided functions. Accordingly, various studies on surgical sutures were classified based on the main functions that are considered important, and studies were conducted by categorizing the latest production technology into 3D printing and electrospinning. (2) Methods: Data from the literature (n = 1077) were collected from databases such as PubMed, Harvard.edu, MDPI, Google Scholar, Web of Science, ACS, Nature, and IOP Publishing. The selected 103 papers were divided into two main groups: cutting-edge characteristics of surgical sutures and the latest technologies for manufacturing surgical sutures. (3) Results: Cutting-edge characteristics of surgical sutures were divided into four major categories: antibacterial, drug delivery, biodegradability, and wound regeneration, and examined in depth. In addition, the final technologies for manufacturing surgical sutures were divided into electrospinning and 3D printing. (4) Conclusions: The results of this study can contribute to the development of multifunctional surgical sutures that promote wound regeneration through antibacterial properties, drug elution, and biodegradability.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 4","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12028033/pdf/","citationCount":"0","resultStr":"{\"title\":\"Antibiotic Action, Drug Delivery, Biodegradability, and Wound Regeneration Characteristics of Surgical Sutures and Cutting-Edge Surgical Suture Manufacturing Technologies.\",\"authors\":\"Hye-Ree Han\",\"doi\":\"10.3390/jfb16040135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>(1) Background: With the emergence of various super bacteria, interest in antibacterial properties, drug delivery, and wound regeneration is increasing in the field of surgical materials. There are many studies on surgical sutures, but not many recent ones that have studied structurally subdivided functions. Accordingly, various studies on surgical sutures were classified based on the main functions that are considered important, and studies were conducted by categorizing the latest production technology into 3D printing and electrospinning. (2) Methods: Data from the literature (n = 1077) were collected from databases such as PubMed, Harvard.edu, MDPI, Google Scholar, Web of Science, ACS, Nature, and IOP Publishing. The selected 103 papers were divided into two main groups: cutting-edge characteristics of surgical sutures and the latest technologies for manufacturing surgical sutures. (3) Results: Cutting-edge characteristics of surgical sutures were divided into four major categories: antibacterial, drug delivery, biodegradability, and wound regeneration, and examined in depth. In addition, the final technologies for manufacturing surgical sutures were divided into electrospinning and 3D printing. (4) Conclusions: The results of this study can contribute to the development of multifunctional surgical sutures that promote wound regeneration through antibacterial properties, drug elution, and biodegradability.</p>\",\"PeriodicalId\":15767,\"journal\":{\"name\":\"Journal of Functional Biomaterials\",\"volume\":\"16 4\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12028033/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/jfb16040135\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16040135","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
摘要
(1)背景:随着各种超级细菌的出现,外科材料领域对抗菌、给药、伤口再生等方面的研究日益增加。关于手术缝合线的研究很多,但最近研究结构细分功能的研究并不多。据此,对手术缝合线的各种研究根据其认为重要的主要功能进行分类,并将最新的生产技术分为3D打印和静电纺丝进行研究。(2)方法:从PubMed、Harvard.edu、MDPI、谷歌Scholar、Web of Science、ACS、Nature、IOP Publishing等数据库中收集文献资料(n = 1077)。入选的103篇论文分为两大类:外科缝合线的前沿特征和外科缝合线制造的最新技术。(3)结果:将手术缝合线的前沿特性分为抗菌、给药、生物降解、创面再生四大类,并进行了深入探讨。此外,手术缝合线的最终制造技术分为静电纺丝和3D打印。(4)结论:本研究结果可通过抗菌性能、药物洗脱性和生物降解性,促进多功能外科缝合线的发展,促进伤口再生。
Antibiotic Action, Drug Delivery, Biodegradability, and Wound Regeneration Characteristics of Surgical Sutures and Cutting-Edge Surgical Suture Manufacturing Technologies.
(1) Background: With the emergence of various super bacteria, interest in antibacterial properties, drug delivery, and wound regeneration is increasing in the field of surgical materials. There are many studies on surgical sutures, but not many recent ones that have studied structurally subdivided functions. Accordingly, various studies on surgical sutures were classified based on the main functions that are considered important, and studies were conducted by categorizing the latest production technology into 3D printing and electrospinning. (2) Methods: Data from the literature (n = 1077) were collected from databases such as PubMed, Harvard.edu, MDPI, Google Scholar, Web of Science, ACS, Nature, and IOP Publishing. The selected 103 papers were divided into two main groups: cutting-edge characteristics of surgical sutures and the latest technologies for manufacturing surgical sutures. (3) Results: Cutting-edge characteristics of surgical sutures were divided into four major categories: antibacterial, drug delivery, biodegradability, and wound regeneration, and examined in depth. In addition, the final technologies for manufacturing surgical sutures were divided into electrospinning and 3D printing. (4) Conclusions: The results of this study can contribute to the development of multifunctional surgical sutures that promote wound regeneration through antibacterial properties, drug elution, and biodegradability.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.