{"title":"利用壳聚糖-磁铁矿纳米颗粒珠共固定化三酶协同水解木质纤维素生物质。","authors":"Sushil Nagar, Meena Sindhu, Kajal Kumari, Vinay Kumar, Gulab Singh, Neeraj Kharor, Vishal Chugh, Vinod Kumar","doi":"10.1080/10826068.2025.2496255","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents the co-immobilization of three enzymes-laccase, cellulase, and xylanase-on chitosan-magnetite nanoparticle beads, with process parameters optimized using response surface methodology on glutaraldehyde-activated chitosan-magnetite beads. The optimization achieved an impressive immobilization yield of 95.25%. Following immobilization on chitosan-magnetite beads (CMBs), the kinetic properties (Km and Vmax), as well as the optimal pH and temperature, were significantly enhanced. The immobilized LCX demonstrated excellent reusability, maintaining 51% of its initial activity after five consecutive cycles, and could be easily recovered using an external magnet. Maximum digestibility of cellulose (% Dc), hemicellulose (% DH), and lignin (% DL) was observed when 10 g of pretreated wheat bran was treated with 20 LCX-loaded CMBs at 40 °C for 60 minutes. The digestibility values for cellulose, hemicellulose, and lignin were 42.10 ± 1.85%, 52.30 ± 2.05%, and 18.12 ± 0.96%, respectively, using immobilized LCX-CMBs-1.0 to 1.5 times higher than those obtained with free enzymes. Additionally, the yield of reducing sugars was 62.17% for immobilized LCX compared to 46.06% for free LCX. The immobilization on CMBs offers an easily removable and cost-effective solution for various industrial applications.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1-13"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic hydrolysis of lignocellulosic biomass using co-immobilization of tri-enzymes on chitosan-magnetite nanoparticle beads.\",\"authors\":\"Sushil Nagar, Meena Sindhu, Kajal Kumari, Vinay Kumar, Gulab Singh, Neeraj Kharor, Vishal Chugh, Vinod Kumar\",\"doi\":\"10.1080/10826068.2025.2496255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents the co-immobilization of three enzymes-laccase, cellulase, and xylanase-on chitosan-magnetite nanoparticle beads, with process parameters optimized using response surface methodology on glutaraldehyde-activated chitosan-magnetite beads. The optimization achieved an impressive immobilization yield of 95.25%. Following immobilization on chitosan-magnetite beads (CMBs), the kinetic properties (Km and Vmax), as well as the optimal pH and temperature, were significantly enhanced. The immobilized LCX demonstrated excellent reusability, maintaining 51% of its initial activity after five consecutive cycles, and could be easily recovered using an external magnet. Maximum digestibility of cellulose (% Dc), hemicellulose (% DH), and lignin (% DL) was observed when 10 g of pretreated wheat bran was treated with 20 LCX-loaded CMBs at 40 °C for 60 minutes. The digestibility values for cellulose, hemicellulose, and lignin were 42.10 ± 1.85%, 52.30 ± 2.05%, and 18.12 ± 0.96%, respectively, using immobilized LCX-CMBs-1.0 to 1.5 times higher than those obtained with free enzymes. Additionally, the yield of reducing sugars was 62.17% for immobilized LCX compared to 46.06% for free LCX. The immobilization on CMBs offers an easily removable and cost-effective solution for various industrial applications.</p>\",\"PeriodicalId\":20401,\"journal\":{\"name\":\"Preparative Biochemistry & Biotechnology\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Preparative Biochemistry & Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10826068.2025.2496255\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preparative Biochemistry & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10826068.2025.2496255","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Synergistic hydrolysis of lignocellulosic biomass using co-immobilization of tri-enzymes on chitosan-magnetite nanoparticle beads.
This paper presents the co-immobilization of three enzymes-laccase, cellulase, and xylanase-on chitosan-magnetite nanoparticle beads, with process parameters optimized using response surface methodology on glutaraldehyde-activated chitosan-magnetite beads. The optimization achieved an impressive immobilization yield of 95.25%. Following immobilization on chitosan-magnetite beads (CMBs), the kinetic properties (Km and Vmax), as well as the optimal pH and temperature, were significantly enhanced. The immobilized LCX demonstrated excellent reusability, maintaining 51% of its initial activity after five consecutive cycles, and could be easily recovered using an external magnet. Maximum digestibility of cellulose (% Dc), hemicellulose (% DH), and lignin (% DL) was observed when 10 g of pretreated wheat bran was treated with 20 LCX-loaded CMBs at 40 °C for 60 minutes. The digestibility values for cellulose, hemicellulose, and lignin were 42.10 ± 1.85%, 52.30 ± 2.05%, and 18.12 ± 0.96%, respectively, using immobilized LCX-CMBs-1.0 to 1.5 times higher than those obtained with free enzymes. Additionally, the yield of reducing sugars was 62.17% for immobilized LCX compared to 46.06% for free LCX. The immobilization on CMBs offers an easily removable and cost-effective solution for various industrial applications.
期刊介绍:
Preparative Biochemistry & Biotechnology is an international forum for rapid dissemination of high quality research results dealing with all aspects of preparative techniques in biochemistry, biotechnology and other life science disciplines.