Carlotta Boggi, Nicola Casiraghi, Xabier Murgia, Silvia Parolo, Enrica Scalera, Giorgio Aquila, Chiara Catozzi, Fabrizio Salomone, Francesca Stretti, Ilaria Minato, Francesca Ravanetti, Luisa Ragionieri, Roberta Ciccimarra, Matteo Zoboli, Gino Villetti, Barbara Montanini, Francesca Ricci, Matteo Storti
{"title":"高氧暴露早产兔BPD模型的纵向转录组学分析。","authors":"Carlotta Boggi, Nicola Casiraghi, Xabier Murgia, Silvia Parolo, Enrica Scalera, Giorgio Aquila, Chiara Catozzi, Fabrizio Salomone, Francesca Stretti, Ilaria Minato, Francesca Ravanetti, Luisa Ragionieri, Roberta Ciccimarra, Matteo Zoboli, Gino Villetti, Barbara Montanini, Francesca Ricci, Matteo Storti","doi":"10.3389/fped.2025.1567091","DOIUrl":null,"url":null,"abstract":"<p><p>Bronchopulmonary dysplasia (BPD) is a multifactorial chronic lung disease of premature neonates. BPD development depends on prenatal and postnatal factors that induce inflammation, altering alveolar growth and pulmonary vascular development. Animal models are essential to investigate the precise molecular pathways leading to BPD. The preterm rabbit combines many advantages of small (e.g., rodents) and large BPD models (e.g., preterm lambs and baboons). Preterm rabbits display mild-to-moderate respiratory distress at delivery, which, along with continuous exposure to hyperoxia (95% O<sub>2</sub>), leads to functional and morphological lung changes resembling a BPD-like phenotype. Nevertheless, the molecular pathways leading to the BPD-like phenotype remain poorly understood. Here, we aimed to characterize the longitudinal gene expression in the lungs of preterm rabbits exposed to 95% O<sub>2</sub>, on postnatal days 3, 5, and 7. Histological analyses confirmed extensive lung injury and reduced lung development after 7 days of hyperoxia. Longitudinal transcriptomic analysis revealed different expression patterns for several genes and pathways. Over time, extracellular matrix organization and angiogenesis were increasingly downregulated. Apoptosis, RNA processing, and inflammation showed the opposite trend. We also investigated the expression of representative genes of these pathways, whose signatures could aid in developing pharmacological treatments in the context of BPD.</p>","PeriodicalId":12637,"journal":{"name":"Frontiers in Pediatrics","volume":"13 ","pages":"1567091"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12063497/pdf/","citationCount":"0","resultStr":"{\"title\":\"Longitudinal transcriptomic analysis of the hyperoxia-exposed preterm rabbit as a model of BPD.\",\"authors\":\"Carlotta Boggi, Nicola Casiraghi, Xabier Murgia, Silvia Parolo, Enrica Scalera, Giorgio Aquila, Chiara Catozzi, Fabrizio Salomone, Francesca Stretti, Ilaria Minato, Francesca Ravanetti, Luisa Ragionieri, Roberta Ciccimarra, Matteo Zoboli, Gino Villetti, Barbara Montanini, Francesca Ricci, Matteo Storti\",\"doi\":\"10.3389/fped.2025.1567091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bronchopulmonary dysplasia (BPD) is a multifactorial chronic lung disease of premature neonates. BPD development depends on prenatal and postnatal factors that induce inflammation, altering alveolar growth and pulmonary vascular development. Animal models are essential to investigate the precise molecular pathways leading to BPD. The preterm rabbit combines many advantages of small (e.g., rodents) and large BPD models (e.g., preterm lambs and baboons). Preterm rabbits display mild-to-moderate respiratory distress at delivery, which, along with continuous exposure to hyperoxia (95% O<sub>2</sub>), leads to functional and morphological lung changes resembling a BPD-like phenotype. Nevertheless, the molecular pathways leading to the BPD-like phenotype remain poorly understood. Here, we aimed to characterize the longitudinal gene expression in the lungs of preterm rabbits exposed to 95% O<sub>2</sub>, on postnatal days 3, 5, and 7. Histological analyses confirmed extensive lung injury and reduced lung development after 7 days of hyperoxia. Longitudinal transcriptomic analysis revealed different expression patterns for several genes and pathways. Over time, extracellular matrix organization and angiogenesis were increasingly downregulated. Apoptosis, RNA processing, and inflammation showed the opposite trend. We also investigated the expression of representative genes of these pathways, whose signatures could aid in developing pharmacological treatments in the context of BPD.</p>\",\"PeriodicalId\":12637,\"journal\":{\"name\":\"Frontiers in Pediatrics\",\"volume\":\"13 \",\"pages\":\"1567091\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12063497/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Pediatrics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fped.2025.1567091\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"PEDIATRICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Pediatrics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fped.2025.1567091","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PEDIATRICS","Score":null,"Total":0}
Longitudinal transcriptomic analysis of the hyperoxia-exposed preterm rabbit as a model of BPD.
Bronchopulmonary dysplasia (BPD) is a multifactorial chronic lung disease of premature neonates. BPD development depends on prenatal and postnatal factors that induce inflammation, altering alveolar growth and pulmonary vascular development. Animal models are essential to investigate the precise molecular pathways leading to BPD. The preterm rabbit combines many advantages of small (e.g., rodents) and large BPD models (e.g., preterm lambs and baboons). Preterm rabbits display mild-to-moderate respiratory distress at delivery, which, along with continuous exposure to hyperoxia (95% O2), leads to functional and morphological lung changes resembling a BPD-like phenotype. Nevertheless, the molecular pathways leading to the BPD-like phenotype remain poorly understood. Here, we aimed to characterize the longitudinal gene expression in the lungs of preterm rabbits exposed to 95% O2, on postnatal days 3, 5, and 7. Histological analyses confirmed extensive lung injury and reduced lung development after 7 days of hyperoxia. Longitudinal transcriptomic analysis revealed different expression patterns for several genes and pathways. Over time, extracellular matrix organization and angiogenesis were increasingly downregulated. Apoptosis, RNA processing, and inflammation showed the opposite trend. We also investigated the expression of representative genes of these pathways, whose signatures could aid in developing pharmacological treatments in the context of BPD.
期刊介绍:
Frontiers in Pediatrics (Impact Factor 2.33) publishes rigorously peer-reviewed research broadly across the field, from basic to clinical research that meets ongoing challenges in pediatric patient care and child health. Field Chief Editors Arjan Te Pas at Leiden University and Michael L. Moritz at the Children''s Hospital of Pittsburgh are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
Frontiers in Pediatrics also features Research Topics, Frontiers special theme-focused issues managed by Guest Associate Editors, addressing important areas in pediatrics. In this fashion, Frontiers serves as an outlet to publish the broadest aspects of pediatrics in both basic and clinical research, including high-quality reviews, case reports, editorials and commentaries related to all aspects of pediatrics.