{"title":"M2巨噬细胞减轻小鼠干眼模型眼表炎症并促进恢复。","authors":"Yingming Wang, Jing Gao, Tianhong Wu, Zhenyu Wang","doi":"10.1080/09273948.2025.2497484","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Dry eye disease (DED) is a chronic, progressive, multifactorial condition characterized by tear film instability and ocular surface damage. Ocular surface inflammation is one of the main mechanisms of DED. This study aims to investigate the therapeutic effects of anti-inflammatory M2 macrophages on ocular surface inflammation and their potential mechanisms in improving dry eye symptoms in a mouse model.</p><p><strong>Methods: </strong>Mouse macrophages (RAW264.7) were polarized into M2 macrophages by IL-4 under different osmolarities, and M2 macrophage conditioned medium (M2-CM) was collected. Flow cytometry and ELISA were applied to measure the cytokine expression of the M2 macrophages. Primary mouse corneal epithelial cells (CECs) were co-cultured with RAW264.7 and M2 macrophages using a Transwell system. The viability and migration of CECs were assessed using CCK-8 and scratch assays. Mouse DED was established by subcutaneous injection of scopolamine, and the therapeutic effects of M2-CM were evaluated by phenol red thread test, fluorescein staining, and tear film breakup time (BUT). PCR and immunofluorescence staining were applied to observe inflammatory factors and cells on the ocular surface.</p><p><strong>Results: </strong>M2 macrophages enhanced CEC viability, proliferation, and migration, but hyperosmolarity inhibited M2 macrophage polarization. In the DED model, M2-CM improved ocular surface conditions, reduced pro-inflammatory cytokine expression, and increased anti-inflammatory factors. Immunofluorescence revealed reduced pro-inflammatory cells (M1 macrophages, Th1, and Th17) and increased M2 macrophages in the ocular tissues after M2-CM treatment.</p><p><strong>Conclusion: </strong>These results suggest that M2-CM ameliorates ocular surface inflammation and promotes recovery in DED, offering a potential therapeutic strategy for DED.</p>","PeriodicalId":19406,"journal":{"name":"Ocular Immunology and Inflammation","volume":" ","pages":"1-10"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"M2 Macrophages Mitigate Ocular Surface Inflammation and Promote Recovery in a Mouse Model of Dry Eye.\",\"authors\":\"Yingming Wang, Jing Gao, Tianhong Wu, Zhenyu Wang\",\"doi\":\"10.1080/09273948.2025.2497484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Dry eye disease (DED) is a chronic, progressive, multifactorial condition characterized by tear film instability and ocular surface damage. Ocular surface inflammation is one of the main mechanisms of DED. This study aims to investigate the therapeutic effects of anti-inflammatory M2 macrophages on ocular surface inflammation and their potential mechanisms in improving dry eye symptoms in a mouse model.</p><p><strong>Methods: </strong>Mouse macrophages (RAW264.7) were polarized into M2 macrophages by IL-4 under different osmolarities, and M2 macrophage conditioned medium (M2-CM) was collected. Flow cytometry and ELISA were applied to measure the cytokine expression of the M2 macrophages. Primary mouse corneal epithelial cells (CECs) were co-cultured with RAW264.7 and M2 macrophages using a Transwell system. The viability and migration of CECs were assessed using CCK-8 and scratch assays. Mouse DED was established by subcutaneous injection of scopolamine, and the therapeutic effects of M2-CM were evaluated by phenol red thread test, fluorescein staining, and tear film breakup time (BUT). PCR and immunofluorescence staining were applied to observe inflammatory factors and cells on the ocular surface.</p><p><strong>Results: </strong>M2 macrophages enhanced CEC viability, proliferation, and migration, but hyperosmolarity inhibited M2 macrophage polarization. In the DED model, M2-CM improved ocular surface conditions, reduced pro-inflammatory cytokine expression, and increased anti-inflammatory factors. Immunofluorescence revealed reduced pro-inflammatory cells (M1 macrophages, Th1, and Th17) and increased M2 macrophages in the ocular tissues after M2-CM treatment.</p><p><strong>Conclusion: </strong>These results suggest that M2-CM ameliorates ocular surface inflammation and promotes recovery in DED, offering a potential therapeutic strategy for DED.</p>\",\"PeriodicalId\":19406,\"journal\":{\"name\":\"Ocular Immunology and Inflammation\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocular Immunology and Inflammation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/09273948.2025.2497484\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocular Immunology and Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/09273948.2025.2497484","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
M2 Macrophages Mitigate Ocular Surface Inflammation and Promote Recovery in a Mouse Model of Dry Eye.
Purpose: Dry eye disease (DED) is a chronic, progressive, multifactorial condition characterized by tear film instability and ocular surface damage. Ocular surface inflammation is one of the main mechanisms of DED. This study aims to investigate the therapeutic effects of anti-inflammatory M2 macrophages on ocular surface inflammation and their potential mechanisms in improving dry eye symptoms in a mouse model.
Methods: Mouse macrophages (RAW264.7) were polarized into M2 macrophages by IL-4 under different osmolarities, and M2 macrophage conditioned medium (M2-CM) was collected. Flow cytometry and ELISA were applied to measure the cytokine expression of the M2 macrophages. Primary mouse corneal epithelial cells (CECs) were co-cultured with RAW264.7 and M2 macrophages using a Transwell system. The viability and migration of CECs were assessed using CCK-8 and scratch assays. Mouse DED was established by subcutaneous injection of scopolamine, and the therapeutic effects of M2-CM were evaluated by phenol red thread test, fluorescein staining, and tear film breakup time (BUT). PCR and immunofluorescence staining were applied to observe inflammatory factors and cells on the ocular surface.
Results: M2 macrophages enhanced CEC viability, proliferation, and migration, but hyperosmolarity inhibited M2 macrophage polarization. In the DED model, M2-CM improved ocular surface conditions, reduced pro-inflammatory cytokine expression, and increased anti-inflammatory factors. Immunofluorescence revealed reduced pro-inflammatory cells (M1 macrophages, Th1, and Th17) and increased M2 macrophages in the ocular tissues after M2-CM treatment.
Conclusion: These results suggest that M2-CM ameliorates ocular surface inflammation and promotes recovery in DED, offering a potential therapeutic strategy for DED.
期刊介绍:
Ocular Immunology & Inflammation ranks 18 out of 59 in the Ophthalmology Category.Ocular Immunology and Inflammation is a peer-reviewed, scientific publication that welcomes the submission of original, previously unpublished manuscripts directed to ophthalmologists and vision scientists. Published bimonthly, the journal provides an international medium for basic and clinical research reports on the ocular inflammatory response and its control by the immune system. The journal publishes original research papers, case reports, reviews, letters to the editor, meeting abstracts, and invited editorials.