Anilkumar I Ananthakrishnan, Althaf Mahin, Thottethodi Subrahmanya Keshava Prasad, Chandran S Abhinand
{"title":"转录组分析和病毒-人相互作用组洞察hbv驱动的肝细胞癌的致癌改变。","authors":"Anilkumar I Ananthakrishnan, Althaf Mahin, Thottethodi Subrahmanya Keshava Prasad, Chandran S Abhinand","doi":"10.1111/1348-0421.13219","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) is the primary form of liver cancer that poses a significant global health concern due to its increasing incidence rates and diverse etiology. Chronic infection induced by hepatitis B virus (HBV) is a prominent etiological factor influencing the development of HCC. Although recent advances in multi-omics approaches have facilitated extensive exploration of HCC molecular characteristics, translating the characteristics of subtypes into clinical applications has been challenging due to parameters like limited sample size and complex classifiers for early detection. In the present study, we performed transcriptomics profiling of HBV-infected HCC patient tissue data to gather comprehensive insights into the intricate molecular mechanisms underlying HBV-associated HCC, specifically, viral protein interactions that influence the expression of oncogenes. The 1059 differentially expressed genes (DEGs) identified across two GEO data sets revealed upregulation of cell cycle and mitosis-related genes, alongside downregulation of genes involved in fatty acid degradation and cytochrome P450 activity. CDK1 and CDC20 which are part of the top cluster and hub gene from interactome analysis were identified as potential markers for HBV-positive HCC through gene expression pattern and overall survival analysis. Additionally, 19 DEGs showing significance in HCC development were identified as interacting partners with HBV proteins. Among them, the interaction of HBsAg with ALB and SHBG and their downregulation correlates to the lower testosterone levels identified in HBV and HCC patients. Together, the study enhances the understanding of the heterogeneity and molecular pathogenesis of HBV-positive HCC.</p>","PeriodicalId":18679,"journal":{"name":"Microbiology and Immunology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcriptome Profiling and Viral-Human Interactome Insights Into HBV-Driven Oncogenic Alterations in Hepatocellular Carcinoma.\",\"authors\":\"Anilkumar I Ananthakrishnan, Althaf Mahin, Thottethodi Subrahmanya Keshava Prasad, Chandran S Abhinand\",\"doi\":\"10.1111/1348-0421.13219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hepatocellular carcinoma (HCC) is the primary form of liver cancer that poses a significant global health concern due to its increasing incidence rates and diverse etiology. Chronic infection induced by hepatitis B virus (HBV) is a prominent etiological factor influencing the development of HCC. Although recent advances in multi-omics approaches have facilitated extensive exploration of HCC molecular characteristics, translating the characteristics of subtypes into clinical applications has been challenging due to parameters like limited sample size and complex classifiers for early detection. In the present study, we performed transcriptomics profiling of HBV-infected HCC patient tissue data to gather comprehensive insights into the intricate molecular mechanisms underlying HBV-associated HCC, specifically, viral protein interactions that influence the expression of oncogenes. The 1059 differentially expressed genes (DEGs) identified across two GEO data sets revealed upregulation of cell cycle and mitosis-related genes, alongside downregulation of genes involved in fatty acid degradation and cytochrome P450 activity. CDK1 and CDC20 which are part of the top cluster and hub gene from interactome analysis were identified as potential markers for HBV-positive HCC through gene expression pattern and overall survival analysis. Additionally, 19 DEGs showing significance in HCC development were identified as interacting partners with HBV proteins. Among them, the interaction of HBsAg with ALB and SHBG and their downregulation correlates to the lower testosterone levels identified in HBV and HCC patients. Together, the study enhances the understanding of the heterogeneity and molecular pathogenesis of HBV-positive HCC.</p>\",\"PeriodicalId\":18679,\"journal\":{\"name\":\"Microbiology and Immunology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology and Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/1348-0421.13219\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology and Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/1348-0421.13219","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Transcriptome Profiling and Viral-Human Interactome Insights Into HBV-Driven Oncogenic Alterations in Hepatocellular Carcinoma.
Hepatocellular carcinoma (HCC) is the primary form of liver cancer that poses a significant global health concern due to its increasing incidence rates and diverse etiology. Chronic infection induced by hepatitis B virus (HBV) is a prominent etiological factor influencing the development of HCC. Although recent advances in multi-omics approaches have facilitated extensive exploration of HCC molecular characteristics, translating the characteristics of subtypes into clinical applications has been challenging due to parameters like limited sample size and complex classifiers for early detection. In the present study, we performed transcriptomics profiling of HBV-infected HCC patient tissue data to gather comprehensive insights into the intricate molecular mechanisms underlying HBV-associated HCC, specifically, viral protein interactions that influence the expression of oncogenes. The 1059 differentially expressed genes (DEGs) identified across two GEO data sets revealed upregulation of cell cycle and mitosis-related genes, alongside downregulation of genes involved in fatty acid degradation and cytochrome P450 activity. CDK1 and CDC20 which are part of the top cluster and hub gene from interactome analysis were identified as potential markers for HBV-positive HCC through gene expression pattern and overall survival analysis. Additionally, 19 DEGs showing significance in HCC development were identified as interacting partners with HBV proteins. Among them, the interaction of HBsAg with ALB and SHBG and their downregulation correlates to the lower testosterone levels identified in HBV and HCC patients. Together, the study enhances the understanding of the heterogeneity and molecular pathogenesis of HBV-positive HCC.
期刊介绍:
Microbiology and Immunology is published in association with Japanese Society for Bacteriology, Japanese Society for Virology, and Japanese Society for Host Defense Research. It is peer-reviewed publication that provides insight into the study of microbes and the host immune, biological and physiological responses.
Fields covered by Microbiology and Immunology include:Bacteriology|Virology|Immunology|pathogenic infections in human, animals and plants|pathogenicity and virulence factors such as microbial toxins and cell-surface components|factors involved in host defense, inflammation, development of vaccines|antimicrobial agents and drug resistance of microbes|genomics and proteomics.