miRNA-mRNA整合分析揭示了盐生植物无瓣海桑盐胁迫响应的候选基因。

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
RNA Biology Pub Date : 2025-12-01 Epub Date: 2025-04-28 DOI:10.1080/15476286.2025.2496097
Beibei Chen, Lishan Zhen, Zhuanying Yang, Tingting Liu, Shaoxia Yang, Wei Mu, Xiao Xiao, Jinhui Chen
{"title":"miRNA-mRNA整合分析揭示了盐生植物无瓣海桑盐胁迫响应的候选基因。","authors":"Beibei Chen, Lishan Zhen, Zhuanying Yang, Tingting Liu, Shaoxia Yang, Wei Mu, Xiao Xiao, Jinhui Chen","doi":"10.1080/15476286.2025.2496097","DOIUrl":null,"url":null,"abstract":"<p><p><i>Sonneratia apetala</i> is a pioneering species of mangrove plants, which has evolved various mechanisms to tolerate salt-stress due to their long-term exposure to a salinized environment as compared to the of terrestrial freshwater plants. However, limited attempt has been made to uncover the underlying molecular mechanism of their saline adaptation. Here, we integrated mRNA and microRNA (miRNA) sequencing to identify the genes and pathways that may be involved in salt stress-response in the roots of <i>S. apetala</i>. A comprehensive full‑length transcriptome containing 295,501 high‑quality unigenes was obtained by PacBio sequencing technology. Of these, 6,686 genes exhibited significantly differential accumulation after salt stress treatment (<i>p</i> < 0.001, <i>Q</i> < 0.01). They were mainly implicated in plant signal transduction and diverse metabolic pathways, such as those involving phenylpropanoid biosynthesis, plant-pathogen interaction and protein processing. Also, our results identified the regulatory interaction between miRNA-target counterparts during salt stress. Taken together, we present the first global overview of the transcriptome of <i>S. apetala</i> roots, and identify potentially important genes and pathways associated with salt tolerance for further investigation. This study is expected to deliver novel insights in understanding the regulatory mechanism in <i>S. apetala</i> response to salt stress.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"22 1","pages":"1-13"},"PeriodicalIF":3.4000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12045576/pdf/","citationCount":"0","resultStr":"{\"title\":\"miRNA-mRNA integrated analysis reveals candidate genes associated with salt stress response in Halophytic <i>Sonneratia apetala</i>.\",\"authors\":\"Beibei Chen, Lishan Zhen, Zhuanying Yang, Tingting Liu, Shaoxia Yang, Wei Mu, Xiao Xiao, Jinhui Chen\",\"doi\":\"10.1080/15476286.2025.2496097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Sonneratia apetala</i> is a pioneering species of mangrove plants, which has evolved various mechanisms to tolerate salt-stress due to their long-term exposure to a salinized environment as compared to the of terrestrial freshwater plants. However, limited attempt has been made to uncover the underlying molecular mechanism of their saline adaptation. Here, we integrated mRNA and microRNA (miRNA) sequencing to identify the genes and pathways that may be involved in salt stress-response in the roots of <i>S. apetala</i>. A comprehensive full‑length transcriptome containing 295,501 high‑quality unigenes was obtained by PacBio sequencing technology. Of these, 6,686 genes exhibited significantly differential accumulation after salt stress treatment (<i>p</i> < 0.001, <i>Q</i> < 0.01). They were mainly implicated in plant signal transduction and diverse metabolic pathways, such as those involving phenylpropanoid biosynthesis, plant-pathogen interaction and protein processing. Also, our results identified the regulatory interaction between miRNA-target counterparts during salt stress. Taken together, we present the first global overview of the transcriptome of <i>S. apetala</i> roots, and identify potentially important genes and pathways associated with salt tolerance for further investigation. This study is expected to deliver novel insights in understanding the regulatory mechanism in <i>S. apetala</i> response to salt stress.</p>\",\"PeriodicalId\":21351,\"journal\":{\"name\":\"RNA Biology\",\"volume\":\"22 1\",\"pages\":\"1-13\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12045576/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RNA Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15476286.2025.2496097\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15476286.2025.2496097","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

无瓣海桑是红树林植物的先驱物种,与陆地淡水植物相比,由于长期暴露在盐碱化环境中,它已经进化出各种机制来耐受盐胁迫。然而,揭示其生理盐水适应的潜在分子机制的尝试有限。在此,我们整合了mRNA和microRNA (miRNA)测序,以确定无瓣草根中可能参与盐胁迫响应的基因和途径。通过PacBio测序技术获得了包含295,501个高质量单基因的完整全长转录组。其中,6686个基因在盐胁迫处理后表现出显著差异积累(p Q S。无瓣草的根,并确定潜在的重要基因和途径相关的耐盐性,为进一步的研究。该研究有望为理解无瓣草对盐胁迫的调控机制提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
miRNA-mRNA integrated analysis reveals candidate genes associated with salt stress response in Halophytic Sonneratia apetala.

Sonneratia apetala is a pioneering species of mangrove plants, which has evolved various mechanisms to tolerate salt-stress due to their long-term exposure to a salinized environment as compared to the of terrestrial freshwater plants. However, limited attempt has been made to uncover the underlying molecular mechanism of their saline adaptation. Here, we integrated mRNA and microRNA (miRNA) sequencing to identify the genes and pathways that may be involved in salt stress-response in the roots of S. apetala. A comprehensive full‑length transcriptome containing 295,501 high‑quality unigenes was obtained by PacBio sequencing technology. Of these, 6,686 genes exhibited significantly differential accumulation after salt stress treatment (p < 0.001, Q < 0.01). They were mainly implicated in plant signal transduction and diverse metabolic pathways, such as those involving phenylpropanoid biosynthesis, plant-pathogen interaction and protein processing. Also, our results identified the regulatory interaction between miRNA-target counterparts during salt stress. Taken together, we present the first global overview of the transcriptome of S. apetala roots, and identify potentially important genes and pathways associated with salt tolerance for further investigation. This study is expected to deliver novel insights in understanding the regulatory mechanism in S. apetala response to salt stress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RNA Biology
RNA Biology 生物-生化与分子生物学
CiteScore
8.60
自引率
0.00%
发文量
82
审稿时长
1 months
期刊介绍: RNA has played a central role in all cellular processes since the beginning of life: decoding the genome, regulating gene expression, mediating molecular interactions, catalyzing chemical reactions. RNA Biology, as a leading journal in the field, provides a platform for presenting and discussing cutting-edge RNA research. RNA Biology brings together a multidisciplinary community of scientists working in the areas of: Transcription and splicing Post-transcriptional regulation of gene expression Non-coding RNAs RNA localization Translation and catalysis by RNA Structural biology Bioinformatics RNA in disease and therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信