{"title":"肌动蛋白重塑抑制剂对模拟海洋双壳类动物太平洋牡蛎细胞能量代谢的影响。","authors":"Eugene P Sokolov, Inna M Sokolova","doi":"10.1242/jeb.249708","DOIUrl":null,"url":null,"abstract":"<p><p>Actin, the most abundant cellular protein, is essential for maintaining structural organization, mechanical stability and cellular motility. The actin cytoskeleton undergoes continuous ATP-dependent reorganization, incurring significant energy costs through treadmilling. However, experimental quantifications of these energy expenditures, especially in ectotherms, remain scarce. In this study, we assessed the energy costs of actin remodeling in the Pacific oyster Crassostrea [also Magallana] gigas, a marine bivalve, by measuring oxygen consumption in the presence of inhibitors of actin treadmilling (latrunculin B, jasplakinolide and cytochalasin D). Our results indicate that under normal physiological conditions, actin remodeling contributes less than 5% to the cellular energy budget in gill and mantle cells of oysters. Unexpectedly, cytochalasin D induced a marked increase in mitochondrial proton leak, observed both in intact cells and isolated mitochondria, suggesting a connection between actin disorganization and increased mitochondrial maintenance costs. Notably, jasplakinolide and latrunculin B, which inhibit actin treadmilling through different mechanisms from those of cytochalasin D, had no effect on mitochondrial respiration. This suggests that different mechanisms of actin cytoskeleton disruption can lead to distinct cellular outcomes. Given the significant role of proton leak in cellular respiration, these findings suggest that actin dynamics may play a crucial role in regulating mitochondrial metabolism, with broad implications for cellular energy costs. Further studies are needed to elucidate the underlying mechanisms of actin-mitochondria interactions and their broader relevance to the regulation of cellular metabolism in ectothermic species.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":"228 8","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12045635/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of actin remodeling inhibitors on cellular energy metabolism of a model marine bivalve, the Pacific oyster.\",\"authors\":\"Eugene P Sokolov, Inna M Sokolova\",\"doi\":\"10.1242/jeb.249708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Actin, the most abundant cellular protein, is essential for maintaining structural organization, mechanical stability and cellular motility. The actin cytoskeleton undergoes continuous ATP-dependent reorganization, incurring significant energy costs through treadmilling. However, experimental quantifications of these energy expenditures, especially in ectotherms, remain scarce. In this study, we assessed the energy costs of actin remodeling in the Pacific oyster Crassostrea [also Magallana] gigas, a marine bivalve, by measuring oxygen consumption in the presence of inhibitors of actin treadmilling (latrunculin B, jasplakinolide and cytochalasin D). Our results indicate that under normal physiological conditions, actin remodeling contributes less than 5% to the cellular energy budget in gill and mantle cells of oysters. Unexpectedly, cytochalasin D induced a marked increase in mitochondrial proton leak, observed both in intact cells and isolated mitochondria, suggesting a connection between actin disorganization and increased mitochondrial maintenance costs. Notably, jasplakinolide and latrunculin B, which inhibit actin treadmilling through different mechanisms from those of cytochalasin D, had no effect on mitochondrial respiration. This suggests that different mechanisms of actin cytoskeleton disruption can lead to distinct cellular outcomes. Given the significant role of proton leak in cellular respiration, these findings suggest that actin dynamics may play a crucial role in regulating mitochondrial metabolism, with broad implications for cellular energy costs. Further studies are needed to elucidate the underlying mechanisms of actin-mitochondria interactions and their broader relevance to the regulation of cellular metabolism in ectothermic species.</p>\",\"PeriodicalId\":15786,\"journal\":{\"name\":\"Journal of Experimental Biology\",\"volume\":\"228 8\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12045635/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/jeb.249708\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.249708","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Effects of actin remodeling inhibitors on cellular energy metabolism of a model marine bivalve, the Pacific oyster.
Actin, the most abundant cellular protein, is essential for maintaining structural organization, mechanical stability and cellular motility. The actin cytoskeleton undergoes continuous ATP-dependent reorganization, incurring significant energy costs through treadmilling. However, experimental quantifications of these energy expenditures, especially in ectotherms, remain scarce. In this study, we assessed the energy costs of actin remodeling in the Pacific oyster Crassostrea [also Magallana] gigas, a marine bivalve, by measuring oxygen consumption in the presence of inhibitors of actin treadmilling (latrunculin B, jasplakinolide and cytochalasin D). Our results indicate that under normal physiological conditions, actin remodeling contributes less than 5% to the cellular energy budget in gill and mantle cells of oysters. Unexpectedly, cytochalasin D induced a marked increase in mitochondrial proton leak, observed both in intact cells and isolated mitochondria, suggesting a connection between actin disorganization and increased mitochondrial maintenance costs. Notably, jasplakinolide and latrunculin B, which inhibit actin treadmilling through different mechanisms from those of cytochalasin D, had no effect on mitochondrial respiration. This suggests that different mechanisms of actin cytoskeleton disruption can lead to distinct cellular outcomes. Given the significant role of proton leak in cellular respiration, these findings suggest that actin dynamics may play a crucial role in regulating mitochondrial metabolism, with broad implications for cellular energy costs. Further studies are needed to elucidate the underlying mechanisms of actin-mitochondria interactions and their broader relevance to the regulation of cellular metabolism in ectothermic species.
期刊介绍:
Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.