{"title":"促进植物生长的根瘤菌诱导的氮循环驱动“微生物伙伴”增强镉的植物修复。","authors":"Yaowei Chi, Xianzhong Ma, Shaohua Chu, Yimin You, Xunfeng Chen, Juncai Wang, Renyuan Wang, Xia Zhang, Dongwei Zhang, Ting Zhao, Dan Zhang, Pei Zhou","doi":"10.1186/s40168-025-02113-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Using plant growth-promoting rhizobacteria (PGPR) combined with hyperaccumulator is an ecologically viable way to remediate cadmium (Cd) pollution in agricultural soil. Despite recent advances in elucidating PGPR-enhanced phytoremediation, the response of plant-associated microbiota to PGPR remains unclear.</p><p><strong>Results: </strong>Here, we found that the effective colonization of PGPR reshaped the rhizosphere nutrient microenvironment, especially driving the nitrogen cycle, primarily mediated by soil nitrate reductase (S-NR). Elevated S-NR activity mobilized amino acid metabolism and synthesis pathways in the rhizosphere, subsequently driving a shift in life history strategies of the rhizosphere microbiota, and enriching specific rare taxa. The reconstructed synthetic community (SynCom3) confirmed that the inclusion of two crucial collaborators (Lysobacter and Microbacterium) could efficiently foster the colonization of PGPR and aid PGPR in executing phytoremediation enhancement. Finally, the multi-omics analysis highlighted the critical roles of phenylpropanoid biosynthesis and tryptophan metabolism pathways in inducing SynCom3 reorganization and PGPR-enhanced phytoremediation.</p><p><strong>Conclusions: </strong>Our results underscore the significance of the rhizosphere microenvironment modification by PGPR for its colonization and efficacy, and highlight the collaborative role of rare microbiota in the context of PGPR-enhanced phytoremediation. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"13 1","pages":"113"},"PeriodicalIF":13.8000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12054286/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nitrogen cycle induced by plant growth-promoting rhizobacteria drives \\\"microbial partners\\\" to enhance cadmium phytoremediation.\",\"authors\":\"Yaowei Chi, Xianzhong Ma, Shaohua Chu, Yimin You, Xunfeng Chen, Juncai Wang, Renyuan Wang, Xia Zhang, Dongwei Zhang, Ting Zhao, Dan Zhang, Pei Zhou\",\"doi\":\"10.1186/s40168-025-02113-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Using plant growth-promoting rhizobacteria (PGPR) combined with hyperaccumulator is an ecologically viable way to remediate cadmium (Cd) pollution in agricultural soil. Despite recent advances in elucidating PGPR-enhanced phytoremediation, the response of plant-associated microbiota to PGPR remains unclear.</p><p><strong>Results: </strong>Here, we found that the effective colonization of PGPR reshaped the rhizosphere nutrient microenvironment, especially driving the nitrogen cycle, primarily mediated by soil nitrate reductase (S-NR). Elevated S-NR activity mobilized amino acid metabolism and synthesis pathways in the rhizosphere, subsequently driving a shift in life history strategies of the rhizosphere microbiota, and enriching specific rare taxa. The reconstructed synthetic community (SynCom3) confirmed that the inclusion of two crucial collaborators (Lysobacter and Microbacterium) could efficiently foster the colonization of PGPR and aid PGPR in executing phytoremediation enhancement. Finally, the multi-omics analysis highlighted the critical roles of phenylpropanoid biosynthesis and tryptophan metabolism pathways in inducing SynCom3 reorganization and PGPR-enhanced phytoremediation.</p><p><strong>Conclusions: </strong>Our results underscore the significance of the rhizosphere microenvironment modification by PGPR for its colonization and efficacy, and highlight the collaborative role of rare microbiota in the context of PGPR-enhanced phytoremediation. Video Abstract.</p>\",\"PeriodicalId\":18447,\"journal\":{\"name\":\"Microbiome\",\"volume\":\"13 1\",\"pages\":\"113\"},\"PeriodicalIF\":13.8000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12054286/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40168-025-02113-x\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-025-02113-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Nitrogen cycle induced by plant growth-promoting rhizobacteria drives "microbial partners" to enhance cadmium phytoremediation.
Background: Using plant growth-promoting rhizobacteria (PGPR) combined with hyperaccumulator is an ecologically viable way to remediate cadmium (Cd) pollution in agricultural soil. Despite recent advances in elucidating PGPR-enhanced phytoremediation, the response of plant-associated microbiota to PGPR remains unclear.
Results: Here, we found that the effective colonization of PGPR reshaped the rhizosphere nutrient microenvironment, especially driving the nitrogen cycle, primarily mediated by soil nitrate reductase (S-NR). Elevated S-NR activity mobilized amino acid metabolism and synthesis pathways in the rhizosphere, subsequently driving a shift in life history strategies of the rhizosphere microbiota, and enriching specific rare taxa. The reconstructed synthetic community (SynCom3) confirmed that the inclusion of two crucial collaborators (Lysobacter and Microbacterium) could efficiently foster the colonization of PGPR and aid PGPR in executing phytoremediation enhancement. Finally, the multi-omics analysis highlighted the critical roles of phenylpropanoid biosynthesis and tryptophan metabolism pathways in inducing SynCom3 reorganization and PGPR-enhanced phytoremediation.
Conclusions: Our results underscore the significance of the rhizosphere microenvironment modification by PGPR for its colonization and efficacy, and highlight the collaborative role of rare microbiota in the context of PGPR-enhanced phytoremediation. Video Abstract.
期刊介绍:
Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.