基于GA-MLR算法预测大鼠急性口服有机磷毒性的可解释QSAR模型的建立。

IF 1.4 4区 农林科学 Q4 ENVIRONMENTAL SCIENCES
Guanqi Yu, Qianlan Zhuo, Chuan Wang
{"title":"基于GA-MLR算法预测大鼠急性口服有机磷毒性的可解释QSAR模型的建立。","authors":"Guanqi Yu, Qianlan Zhuo, Chuan Wang","doi":"10.1080/03601234.2025.2489259","DOIUrl":null,"url":null,"abstract":"<p><p>Organophosphates (OPs) are highly hazardous chemicals with broad-spectrum toxicity. Traditional <i>in vivo</i> methods for determining OP toxicity are time-consuming and labor-intensive. In this study, we developed a quantitative structure-activity relationship (QSAR) model to predict acute rat toxicity of OPs using two-dimensional molecular and quantum chemical descriptors, optimized through genetic algorithm-based multiple linear regression (GA-MLR). The optimal model demonstrated robust performance with the following statistical parameters: coefficient of determination (<i>R</i><sup>2</sup>) of 0.7451, leave-one-out cross-validation (LOOCV) coefficient (<i>Q</i><sup>2</sup><sub>Loo</sub>) of 0.6208, external test set coefficient of determination (<i>R</i><sup>2</sup><sub>ext</sub>) of 0.7360. These metrics indicate excellent generalization and predictive capabilities of the model. Interpretative analysis of the model revealed that NumHDonors and PEOE_VSA were the most significant descriptors influencing OP toxicity. An increase in hydrogen bond donors within OP molecules reduces toxicity, as these donors enhance hydrophilicity, diminishing membrane permeability. Moreover, the PEOE_VSA descriptor characterizes the partial charge properties of OP molecules, reflecting their electrostatic interactions with acetylcholinesterase (AChE) during binding, which influences toxicity. This study presents an optimized modeling strategy designed for small datasets, enabling stable feature selection and accurate assessment of their contributions to toxicity prediction. This research provides a reliable QSAR approach for OP toxicity prediction while offering new insights into toxicity mechanisms.</p>","PeriodicalId":15720,"journal":{"name":"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes","volume":"60 5","pages":"219-231"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of an Interpretable QSAR Model for Predicting Acute Oral Toxicity of Organophosphates in Rats Based on GA-MLR Algorithm.\",\"authors\":\"Guanqi Yu, Qianlan Zhuo, Chuan Wang\",\"doi\":\"10.1080/03601234.2025.2489259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Organophosphates (OPs) are highly hazardous chemicals with broad-spectrum toxicity. Traditional <i>in vivo</i> methods for determining OP toxicity are time-consuming and labor-intensive. In this study, we developed a quantitative structure-activity relationship (QSAR) model to predict acute rat toxicity of OPs using two-dimensional molecular and quantum chemical descriptors, optimized through genetic algorithm-based multiple linear regression (GA-MLR). The optimal model demonstrated robust performance with the following statistical parameters: coefficient of determination (<i>R</i><sup>2</sup>) of 0.7451, leave-one-out cross-validation (LOOCV) coefficient (<i>Q</i><sup>2</sup><sub>Loo</sub>) of 0.6208, external test set coefficient of determination (<i>R</i><sup>2</sup><sub>ext</sub>) of 0.7360. These metrics indicate excellent generalization and predictive capabilities of the model. Interpretative analysis of the model revealed that NumHDonors and PEOE_VSA were the most significant descriptors influencing OP toxicity. An increase in hydrogen bond donors within OP molecules reduces toxicity, as these donors enhance hydrophilicity, diminishing membrane permeability. Moreover, the PEOE_VSA descriptor characterizes the partial charge properties of OP molecules, reflecting their electrostatic interactions with acetylcholinesterase (AChE) during binding, which influences toxicity. This study presents an optimized modeling strategy designed for small datasets, enabling stable feature selection and accurate assessment of their contributions to toxicity prediction. This research provides a reliable QSAR approach for OP toxicity prediction while offering new insights into toxicity mechanisms.</p>\",\"PeriodicalId\":15720,\"journal\":{\"name\":\"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes\",\"volume\":\"60 5\",\"pages\":\"219-231\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/03601234.2025.2489259\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/03601234.2025.2489259","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/17 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

有机磷是一种具有广谱毒性的高危险性化学品。测定OP毒性的传统体内方法耗时耗力。在本研究中,我们建立了定量构效关系(QSAR)模型,利用二维分子和量子化学描述符预测OPs的急性大鼠毒性,并通过基于遗传算法的多元线性回归(GA-MLR)进行优化。最优模型具有稳健性,统计参数为:决定系数(R2)为0.7451,留一交叉验证(LOOCV)系数(Q2Loo)为0.6208,外部测试集决定系数(R2ext)为0.7360。这些指标表明该模型具有出色的泛化和预测能力。模型的解释性分析显示,numhdonor和PEOE_VSA是影响OP毒性的最显著描述符。OP分子内氢键供体的增加降低了毒性,因为这些供体增强了亲水性,降低了膜的渗透性。此外,PEOE_VSA描述符表征了OP分子的部分电荷性质,反映了它们在结合过程中与乙酰胆碱酯酶(AChE)的静电相互作用,从而影响毒性。本研究提出了一种针对小数据集设计的优化建模策略,能够稳定地选择特征并准确评估其对毒性预测的贡献。本研究为OP毒性预测提供了可靠的QSAR方法,同时为毒性机制提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of an Interpretable QSAR Model for Predicting Acute Oral Toxicity of Organophosphates in Rats Based on GA-MLR Algorithm.

Organophosphates (OPs) are highly hazardous chemicals with broad-spectrum toxicity. Traditional in vivo methods for determining OP toxicity are time-consuming and labor-intensive. In this study, we developed a quantitative structure-activity relationship (QSAR) model to predict acute rat toxicity of OPs using two-dimensional molecular and quantum chemical descriptors, optimized through genetic algorithm-based multiple linear regression (GA-MLR). The optimal model demonstrated robust performance with the following statistical parameters: coefficient of determination (R2) of 0.7451, leave-one-out cross-validation (LOOCV) coefficient (Q2Loo) of 0.6208, external test set coefficient of determination (R2ext) of 0.7360. These metrics indicate excellent generalization and predictive capabilities of the model. Interpretative analysis of the model revealed that NumHDonors and PEOE_VSA were the most significant descriptors influencing OP toxicity. An increase in hydrogen bond donors within OP molecules reduces toxicity, as these donors enhance hydrophilicity, diminishing membrane permeability. Moreover, the PEOE_VSA descriptor characterizes the partial charge properties of OP molecules, reflecting their electrostatic interactions with acetylcholinesterase (AChE) during binding, which influences toxicity. This study presents an optimized modeling strategy designed for small datasets, enabling stable feature selection and accurate assessment of their contributions to toxicity prediction. This research provides a reliable QSAR approach for OP toxicity prediction while offering new insights into toxicity mechanisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
5.00%
发文量
87
审稿时长
1 months
期刊介绍: 12 issues per year Abstracted/indexed in: Agricola; Analytical Abstracts; ASFA 3: Aquatic Pollution & Environmental Quality; BioSciences Information Service of Biological Abstracts (BIOSIS); CAB Abstracts; CAB AGBiotech News and Information; CAB Irrigation & Drainage Abstracts; CAB Soils & Fertilizers Abstracts; Chemical Abstracts Service Plus; CSA Aluminum Industry Abstracts; CSA ANTE: Abstracts in New Technology and Engineering; CSA ASFA 3 Aquatic Pollution and Environmental Quality; CSA ASSIA: Applied Social Sciences Index & Abstracts; CSA Ecology Abstracts; CSA Entomology Abstracts; CSA Environmental Engineering Abstracts; CSA Health & Safety Science Abstracts; CSA Pollution Abstracts; CSA Toxicology Abstracts; CSA Water Resource Abstracts; EBSCOhost Online Research Databases; Elsevier BIOBASE/Current Awareness in Biological Sciences; Elsevier Engineering Information: EMBASE/Excerpta Medica/ Engineering Index/COMPENDEX PLUS; Environment Abstracts; Environmental Knowledge; Food Science and Technology Abstracts; Geo Abstracts; Geobase; Food Science; Index Medicus/ MEDLINE; INIST-Pascal/ CNRS; NIOSHTIC; ISI BIOSIS Previews; Pesticides; Food Contaminants and Agricultural Wastes: Analytical Abstracts; Pollution Abstracts; PubSCIENCE; Reference Update; Research Alert; Science Citation Index Expanded (SCIE); and Water Resources Abstracts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信