Yuan Chen, Li Chen, Hao Li, Bin Zhang, Marie-Christine Record, Pascal Boulet, Juan Wang, Jan-Michael Albina, Yi Yang, Weiliang Ma
{"title":"三乙胺包封磷酸钙低聚物/聚丙烯酰胺协同增强α-半水石膏复合材料:有机/无机互穿网络机械强化机理研究","authors":"Yuan Chen, Li Chen, Hao Li, Bin Zhang, Marie-Christine Record, Pascal Boulet, Juan Wang, Jan-Michael Albina, Yi Yang, Weiliang Ma","doi":"10.3390/molecules30092002","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, a novel calcium phosphate/polyacrylamide copolymer/α-type hemihydrate gypsum (CPO/PAM/α-HHG) composite material was prepared by polymerising a stable inorganic CPO precursor, end-capped with triethylamine (TEA), with an organic polyacrylamide (PAM) hydrogel to form a CPO/PAM precursor solution. Subsequently, this precursor solution was mixed with inorganic α-hemihydrate gypsum. The effects of CPO/PAM precursor addition and CPO addition on the slurry flowability, initial setting time, and mechanical properties of hardened specimens of the CPO/PAM/α-HHG composite were investigated. The structural characteristics of the composites were analysed by XRD, FE-SEM, and TGA. The results show that the initial setting time of the CPO/PAM/α-HHG composites was 26.7 min, which was 140.5% longer than that of the pure water α-HHG system and 3.9% longer than that of the PAM/α-HHG system; additionally, the oven-dried specimens had a flexural strength of 27.59 MPa and a compressive strength of 68.48 MPa, which were 77.2% and 102.0% higher than those of the pure water α-HHG system and 38.8% and 14.1% higher than those of the PAM/α-HHG system, respectively. The wet compressive strength of the CPO/PAM/α-HHG composites was improved by 11.8% compared to that of the PAM/α-HHG system. A structural analysis showed that CPO promoted the gelation process of PAM and allowed the hydration reaction process of α-HHG to be fully carried out by slowing down the gelation process of the organic network, which led to the full development of both organic and inorganic networks, ultimately forming an interspersed inorganic/organic dual-network structure, which enhanced the comprehensive mechanical properties of the composites. This study provides a new idea for the modification of α-type hemihydrate gypsum and a new method for the preparation of high-utilisation and high-performance gypsum-based composites.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 9","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073873/pdf/","citationCount":"0","resultStr":"{\"title\":\"Triethylamine-Capped Calcium Phosphate Oligomers/Polyacrylamide Synergistically Reinforced <i>α</i>-Hemihydrate Gypsum Composites: A Mechanistic Study on Mechanical Strengthening via Organic/Inorganic Interpenetrating Networks.\",\"authors\":\"Yuan Chen, Li Chen, Hao Li, Bin Zhang, Marie-Christine Record, Pascal Boulet, Juan Wang, Jan-Michael Albina, Yi Yang, Weiliang Ma\",\"doi\":\"10.3390/molecules30092002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, a novel calcium phosphate/polyacrylamide copolymer/α-type hemihydrate gypsum (CPO/PAM/α-HHG) composite material was prepared by polymerising a stable inorganic CPO precursor, end-capped with triethylamine (TEA), with an organic polyacrylamide (PAM) hydrogel to form a CPO/PAM precursor solution. Subsequently, this precursor solution was mixed with inorganic α-hemihydrate gypsum. The effects of CPO/PAM precursor addition and CPO addition on the slurry flowability, initial setting time, and mechanical properties of hardened specimens of the CPO/PAM/α-HHG composite were investigated. The structural characteristics of the composites were analysed by XRD, FE-SEM, and TGA. The results show that the initial setting time of the CPO/PAM/α-HHG composites was 26.7 min, which was 140.5% longer than that of the pure water α-HHG system and 3.9% longer than that of the PAM/α-HHG system; additionally, the oven-dried specimens had a flexural strength of 27.59 MPa and a compressive strength of 68.48 MPa, which were 77.2% and 102.0% higher than those of the pure water α-HHG system and 38.8% and 14.1% higher than those of the PAM/α-HHG system, respectively. The wet compressive strength of the CPO/PAM/α-HHG composites was improved by 11.8% compared to that of the PAM/α-HHG system. A structural analysis showed that CPO promoted the gelation process of PAM and allowed the hydration reaction process of α-HHG to be fully carried out by slowing down the gelation process of the organic network, which led to the full development of both organic and inorganic networks, ultimately forming an interspersed inorganic/organic dual-network structure, which enhanced the comprehensive mechanical properties of the composites. This study provides a new idea for the modification of α-type hemihydrate gypsum and a new method for the preparation of high-utilisation and high-performance gypsum-based composites.</p>\",\"PeriodicalId\":19041,\"journal\":{\"name\":\"Molecules\",\"volume\":\"30 9\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073873/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/molecules30092002\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30092002","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Triethylamine-Capped Calcium Phosphate Oligomers/Polyacrylamide Synergistically Reinforced α-Hemihydrate Gypsum Composites: A Mechanistic Study on Mechanical Strengthening via Organic/Inorganic Interpenetrating Networks.
In this study, a novel calcium phosphate/polyacrylamide copolymer/α-type hemihydrate gypsum (CPO/PAM/α-HHG) composite material was prepared by polymerising a stable inorganic CPO precursor, end-capped with triethylamine (TEA), with an organic polyacrylamide (PAM) hydrogel to form a CPO/PAM precursor solution. Subsequently, this precursor solution was mixed with inorganic α-hemihydrate gypsum. The effects of CPO/PAM precursor addition and CPO addition on the slurry flowability, initial setting time, and mechanical properties of hardened specimens of the CPO/PAM/α-HHG composite were investigated. The structural characteristics of the composites were analysed by XRD, FE-SEM, and TGA. The results show that the initial setting time of the CPO/PAM/α-HHG composites was 26.7 min, which was 140.5% longer than that of the pure water α-HHG system and 3.9% longer than that of the PAM/α-HHG system; additionally, the oven-dried specimens had a flexural strength of 27.59 MPa and a compressive strength of 68.48 MPa, which were 77.2% and 102.0% higher than those of the pure water α-HHG system and 38.8% and 14.1% higher than those of the PAM/α-HHG system, respectively. The wet compressive strength of the CPO/PAM/α-HHG composites was improved by 11.8% compared to that of the PAM/α-HHG system. A structural analysis showed that CPO promoted the gelation process of PAM and allowed the hydration reaction process of α-HHG to be fully carried out by slowing down the gelation process of the organic network, which led to the full development of both organic and inorganic networks, ultimately forming an interspersed inorganic/organic dual-network structure, which enhanced the comprehensive mechanical properties of the composites. This study provides a new idea for the modification of α-type hemihydrate gypsum and a new method for the preparation of high-utilisation and high-performance gypsum-based composites.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.