评估光合模式及其在评估植物对氧浓度变化响应中的作用:黑麦草和小麦a - n-C - a和a - n-C - i曲线的比较分析

IF 4.1 2区 生物学 Q1 PLANT SCIENCES
Frontiers in Plant Science Pub Date : 2025-04-29 eCollection Date: 2025-01-01 DOI:10.3389/fpls.2025.1575217
Zi-Piao Ye, Xiao-Long Yang, Zi-Wu-Yin Ye, Ting An, Shi-Hua Duan, Hua-Jing Kang, Fu-Biao Wang
{"title":"评估光合模式及其在评估植物对氧浓度变化响应中的作用:黑麦草和小麦a - n-C - a和a - n-C - i曲线的比较分析","authors":"Zi-Piao Ye, Xiao-Long Yang, Zi-Wu-Yin Ye, Ting An, Shi-Hua Duan, Hua-Jing Kang, Fu-Biao Wang","doi":"10.3389/fpls.2025.1575217","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate determination of photosynthetic parameters is essential for understanding how plants respond to environmental changes. In this study, we evaluated the performance of the Farquhar-von Caemmerer-Berry (FvCB) model and introduced a novel model to fit photosynthetic rates against ambient CO<sub>2</sub> concentration (<i>A</i> <sub>n</sub> <i>-C</i> <sub>a</sub>) and intercellular CO<sub>2</sub> concentration (<i>A</i> <sub>n</sub> <i>-C</i> <sub>i</sub>) curves for <i>Lolium perenne</i> and <i>Triticum aestivum</i> under 2% and 21% O<sub>2</sub> conditions. We observed significant discrepancies in the FvCB model's fitting capacity for <i>A</i> <sub>n</sub> <i>-C</i> <sub>a</sub> and <i>A</i> <sub>n</sub> <i>-C</i> <sub>a</sub> curves across different oxygen regimes, particularly in estimates of key parameters such as the maximum carboxylation rate (<i>V</i> <sub>cmax</sub>), the day respiratory rate (<i>R</i> <sub>day</sub>), and the maximum electron transport rate for carbon assimilation (<i>J</i> <sub>A-max</sub>). Notably, under 2% and 21% O<sub>2</sub> conditions, the values of <i>V</i> <sub>cmax</sub> and <i>R</i> <sub>day</sub> derived from <i>A</i> <sub>n</sub> <i>-C</i> <sub>a</sub> curves using the FvCB model were 46.98%, 44.37%, 46.63%, and 37.66% lower than those from <i>A</i> <sub>n</sub> <i>-C</i> <sub>i</sub> curves for <i>L. perenne</i>, and 47.10%, 44.30%, 47.03%, and 37.36% lower for <i>T. aestivum</i>, respectively. These results highlight that the FvCB model yields significantly different <i>V</i> <sub>cmax</sub> and <i>R</i> <sub>day</sub> values when fitting <i>A</i> <sub>n</sub> <i>-C</i> <sub>a</sub> versus <i>A</i> <sub>n</sub> <i>-C</i> <sub>i</sub> curves for these two C<sub>3</sub> plants. In contrast, the novel model demonstrated superior fitting capabilities for both <i>A</i> <sub>n</sub> <i>-C</i> <sub>a</sub> and <i>A</i> <sub>n</sub> <i>-C</i> <sub>i</sub> curves under 2% and 21% O<sub>2</sub> conditions, achieving high determination coefficients (<i>R</i> <sup>2</sup>≥ 0.989). Key parameters such as the maximum net photosynthetic rate (<i>A</i> <sub>max</sub>) and the CO<sub>2</sub> compensation point (<i>Γ</i>) in the presence of <i>R</i> <sub>day</sub>, showed no significant differences across oxygen concentrations. However, the apparent photorespiratory rate (<i>R</i> <sub>pa0</sub>) and photorespiratory rate (<i>R</i> <sub>p0</sub>) derived from <i>A</i> <sub>n</sub> <i>-C</i> <sub>i</sub> curves consistently exceeded those from <i>A</i> <sub>n</sub> <i>-C</i> <sub>a</sub> curves for both plant species. Furthermore, <i>R</i> <sub>pa0</sub> values derived from <i>A</i> <sub>n</sub> <i>-C</i> <sub>a</sub> curves closely matched observed values, suggesting that <i>A</i> <sub>n</sub> <i>-C</i> <sub>a</sub> curves more accurately reflect the physiological state of plants, particularly for estimating photorespiratory rates. This study underscores the importance of selecting appropriate CO<sub>2</sub>-response curves to investigate plant photosynthesis and photorespiration under diverse environmental conditions, thereby ensuring a more accurate understanding of plant responses to changing environments.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1575217"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12069373/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluating photosynthetic models and their potency in assessing plant responses to changing oxygen concentrations: a comparative analysis of <i>A</i> <sub>n</sub>-<i>C</i> <sub>a</sub> and <i>A</i> <sub>n</sub>-<i>C</i> <sub>i</sub> curves in <i>Lolium perenne</i> and <i>Triticum aestivum</i>.\",\"authors\":\"Zi-Piao Ye, Xiao-Long Yang, Zi-Wu-Yin Ye, Ting An, Shi-Hua Duan, Hua-Jing Kang, Fu-Biao Wang\",\"doi\":\"10.3389/fpls.2025.1575217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate determination of photosynthetic parameters is essential for understanding how plants respond to environmental changes. In this study, we evaluated the performance of the Farquhar-von Caemmerer-Berry (FvCB) model and introduced a novel model to fit photosynthetic rates against ambient CO<sub>2</sub> concentration (<i>A</i> <sub>n</sub> <i>-C</i> <sub>a</sub>) and intercellular CO<sub>2</sub> concentration (<i>A</i> <sub>n</sub> <i>-C</i> <sub>i</sub>) curves for <i>Lolium perenne</i> and <i>Triticum aestivum</i> under 2% and 21% O<sub>2</sub> conditions. We observed significant discrepancies in the FvCB model's fitting capacity for <i>A</i> <sub>n</sub> <i>-C</i> <sub>a</sub> and <i>A</i> <sub>n</sub> <i>-C</i> <sub>a</sub> curves across different oxygen regimes, particularly in estimates of key parameters such as the maximum carboxylation rate (<i>V</i> <sub>cmax</sub>), the day respiratory rate (<i>R</i> <sub>day</sub>), and the maximum electron transport rate for carbon assimilation (<i>J</i> <sub>A-max</sub>). Notably, under 2% and 21% O<sub>2</sub> conditions, the values of <i>V</i> <sub>cmax</sub> and <i>R</i> <sub>day</sub> derived from <i>A</i> <sub>n</sub> <i>-C</i> <sub>a</sub> curves using the FvCB model were 46.98%, 44.37%, 46.63%, and 37.66% lower than those from <i>A</i> <sub>n</sub> <i>-C</i> <sub>i</sub> curves for <i>L. perenne</i>, and 47.10%, 44.30%, 47.03%, and 37.36% lower for <i>T. aestivum</i>, respectively. These results highlight that the FvCB model yields significantly different <i>V</i> <sub>cmax</sub> and <i>R</i> <sub>day</sub> values when fitting <i>A</i> <sub>n</sub> <i>-C</i> <sub>a</sub> versus <i>A</i> <sub>n</sub> <i>-C</i> <sub>i</sub> curves for these two C<sub>3</sub> plants. In contrast, the novel model demonstrated superior fitting capabilities for both <i>A</i> <sub>n</sub> <i>-C</i> <sub>a</sub> and <i>A</i> <sub>n</sub> <i>-C</i> <sub>i</sub> curves under 2% and 21% O<sub>2</sub> conditions, achieving high determination coefficients (<i>R</i> <sup>2</sup>≥ 0.989). Key parameters such as the maximum net photosynthetic rate (<i>A</i> <sub>max</sub>) and the CO<sub>2</sub> compensation point (<i>Γ</i>) in the presence of <i>R</i> <sub>day</sub>, showed no significant differences across oxygen concentrations. However, the apparent photorespiratory rate (<i>R</i> <sub>pa0</sub>) and photorespiratory rate (<i>R</i> <sub>p0</sub>) derived from <i>A</i> <sub>n</sub> <i>-C</i> <sub>i</sub> curves consistently exceeded those from <i>A</i> <sub>n</sub> <i>-C</i> <sub>a</sub> curves for both plant species. Furthermore, <i>R</i> <sub>pa0</sub> values derived from <i>A</i> <sub>n</sub> <i>-C</i> <sub>a</sub> curves closely matched observed values, suggesting that <i>A</i> <sub>n</sub> <i>-C</i> <sub>a</sub> curves more accurately reflect the physiological state of plants, particularly for estimating photorespiratory rates. This study underscores the importance of selecting appropriate CO<sub>2</sub>-response curves to investigate plant photosynthesis and photorespiration under diverse environmental conditions, thereby ensuring a more accurate understanding of plant responses to changing environments.</p>\",\"PeriodicalId\":12632,\"journal\":{\"name\":\"Frontiers in Plant Science\",\"volume\":\"16 \",\"pages\":\"1575217\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12069373/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fpls.2025.1575217\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2025.1575217","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

准确测定光合参数对于了解植物如何应对环境变化至关重要。本研究评估了Farquhar-von Caemmerer-Berry (FvCB)模型的性能,并引入了一个新的模型来拟合二年生黑麦草(Lolium perenne)和小麦(Triticum aestivum)在2%和21% O2条件下的光合速率与环境CO2浓度(an -C - a)和胞间CO2浓度(an -C - i)曲线。我们观察到FvCB模型在不同氧态下对A n -C - A和A n -C - A曲线的拟合能力存在显著差异,特别是在最大羧基化速率(V cmax)、日呼吸速率(R day)和碳同化的最大电子传递速率(J A-max)等关键参数的估计上。值得注意的是,在2%和21% O2条件下,利用FvCB模型得到的A n -C - A曲线的V cmax值和R day值分别比双生羊草低46.98%、44.37%、46.63%和37.66%,而稻的V cmax值和R day值分别比双生羊草低47.10%、44.30%、47.03%和37.36%。这些结果表明,当拟合这两种C3植物的A n -C - A曲线与A n -C - i曲线时,FvCB模型产生的V - cmax和R日值显着不同。相比之下,该模型在2%和21% O2条件下对A n -C - A和A n -C - i曲线均具有较好的拟合能力,具有较高的确定系数(r2≥0.989)。R d条件下的最大净光合速率(A max)和CO2补偿点(Γ)等关键参数在不同氧浓度下无显著差异。两种植物的表观光呼吸速率(R pa0)和表观光呼吸速率(R p0)均高于n -C - A曲线。此外,由A n -C - A曲线得到的rpa0值与观测值非常接近,表明A n -C - A曲线更准确地反映了植物的生理状态,特别是在估计光呼吸速率方面。本研究强调了选择合适的co2响应曲线来研究不同环境条件下植物光合和光呼吸的重要性,从而确保更准确地了解植物对变化环境的响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating photosynthetic models and their potency in assessing plant responses to changing oxygen concentrations: a comparative analysis of A n-C a and A n-C i curves in Lolium perenne and Triticum aestivum.

Accurate determination of photosynthetic parameters is essential for understanding how plants respond to environmental changes. In this study, we evaluated the performance of the Farquhar-von Caemmerer-Berry (FvCB) model and introduced a novel model to fit photosynthetic rates against ambient CO2 concentration (A n -C a) and intercellular CO2 concentration (A n -C i) curves for Lolium perenne and Triticum aestivum under 2% and 21% O2 conditions. We observed significant discrepancies in the FvCB model's fitting capacity for A n -C a and A n -C a curves across different oxygen regimes, particularly in estimates of key parameters such as the maximum carboxylation rate (V cmax), the day respiratory rate (R day), and the maximum electron transport rate for carbon assimilation (J A-max). Notably, under 2% and 21% O2 conditions, the values of V cmax and R day derived from A n -C a curves using the FvCB model were 46.98%, 44.37%, 46.63%, and 37.66% lower than those from A n -C i curves for L. perenne, and 47.10%, 44.30%, 47.03%, and 37.36% lower for T. aestivum, respectively. These results highlight that the FvCB model yields significantly different V cmax and R day values when fitting A n -C a versus A n -C i curves for these two C3 plants. In contrast, the novel model demonstrated superior fitting capabilities for both A n -C a and A n -C i curves under 2% and 21% O2 conditions, achieving high determination coefficients (R 2≥ 0.989). Key parameters such as the maximum net photosynthetic rate (A max) and the CO2 compensation point (Γ) in the presence of R day, showed no significant differences across oxygen concentrations. However, the apparent photorespiratory rate (R pa0) and photorespiratory rate (R p0) derived from A n -C i curves consistently exceeded those from A n -C a curves for both plant species. Furthermore, R pa0 values derived from A n -C a curves closely matched observed values, suggesting that A n -C a curves more accurately reflect the physiological state of plants, particularly for estimating photorespiratory rates. This study underscores the importance of selecting appropriate CO2-response curves to investigate plant photosynthesis and photorespiration under diverse environmental conditions, thereby ensuring a more accurate understanding of plant responses to changing environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Plant Science
Frontiers in Plant Science PLANT SCIENCES-
CiteScore
7.30
自引率
14.30%
发文量
4844
审稿时长
14 weeks
期刊介绍: In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches. Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信