{"title":"CRISPR/ cas9介导的家蚕BmGDAP2基因敲除:延长寿命和改变影响发育途径的基因表达","authors":"Chaojun Yuan, Zichong Zhou, Qifeng Guo, Ying Yang, Yue Sun, Yong Liu, Wenyi Jia, Shuoqi Fan, Jinxin Wu, Xiaoting Hua, Ping Lin, Ping Zhao, Qingyou Xia","doi":"10.3390/insects16040354","DOIUrl":null,"url":null,"abstract":"<p><p>Ganglioside-induced differentiation-associated protein 2 (<i>GDAP2</i>) is a gene involved in hereditary cerebellar ataxia. At present, little is known about the function of <i>GDAP2</i> in insects. In this study, <i>BmGDAP2</i> was detected to be highly expressed in the head, epidermis, midgut, and anterior silk glands of silkworms. We generated a knockout mutant, <i>BmGDAP2</i> (<i>BmGDAP2</i><sup>KO</sup>), using the CRISPR/Cas9 system. Compared with that of the wild-type, the growth cycle of <i>BmGDAP2</i><sup>KO</sup> larvae was significantly prolonged, while their body size was reduced. Furthermore, we found 149 differentially expressed genes (DEGs) between <i>BmGDAP2</i><sup>KO</sup> and the wild-type, including 106 upregulated and 43 downregulated genes. GO annotation analysis indicated that <i>BmGDAP2</i> primarily influences structural and molecular activities, as well as catalytic and binding functions. KEGG pathway analysis revealed that the differentially expressed genes were mainly enriched in pathways related to peroxidase activity, hormone synthesis, apoptosis, and longevity regulation. Further investigation focused on candidate genes related to these pathways. We found that the expression levels of <i>MAD2L1</i>, which can inhibit cell proliferation and promote apoptosis, and <i>Aurka</i>-b, which plays a crucial role in cell cycle regulation, were significantly reduced in <i>BmGDAP2</i><sup>KO</sup> silkworms. These changes may interfere with the normal functions of cell division, leading to the prolonged developmental cycle observed in <i>BmGDAP2</i><sup>KO</sup> larvae. Our findings demonstrate that knockout of <i>BmGDAP2</i> significantly prolongs the life cycle of <i>Bombyx mori</i> by affecting genes related to autophagy, apoptosis, and hormone regulation.</p>","PeriodicalId":13642,"journal":{"name":"Insects","volume":"16 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12028214/pdf/","citationCount":"0","resultStr":"{\"title\":\"CRISPR/Cas9-Mediated Knockout of <i>BmGDAP2</i> in the Silkworm, <i>Bombyx mori</i>: Extended Lifespan and Altered Gene Expression Impacting Developmental Pathways.\",\"authors\":\"Chaojun Yuan, Zichong Zhou, Qifeng Guo, Ying Yang, Yue Sun, Yong Liu, Wenyi Jia, Shuoqi Fan, Jinxin Wu, Xiaoting Hua, Ping Lin, Ping Zhao, Qingyou Xia\",\"doi\":\"10.3390/insects16040354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ganglioside-induced differentiation-associated protein 2 (<i>GDAP2</i>) is a gene involved in hereditary cerebellar ataxia. At present, little is known about the function of <i>GDAP2</i> in insects. In this study, <i>BmGDAP2</i> was detected to be highly expressed in the head, epidermis, midgut, and anterior silk glands of silkworms. We generated a knockout mutant, <i>BmGDAP2</i> (<i>BmGDAP2</i><sup>KO</sup>), using the CRISPR/Cas9 system. Compared with that of the wild-type, the growth cycle of <i>BmGDAP2</i><sup>KO</sup> larvae was significantly prolonged, while their body size was reduced. Furthermore, we found 149 differentially expressed genes (DEGs) between <i>BmGDAP2</i><sup>KO</sup> and the wild-type, including 106 upregulated and 43 downregulated genes. GO annotation analysis indicated that <i>BmGDAP2</i> primarily influences structural and molecular activities, as well as catalytic and binding functions. KEGG pathway analysis revealed that the differentially expressed genes were mainly enriched in pathways related to peroxidase activity, hormone synthesis, apoptosis, and longevity regulation. Further investigation focused on candidate genes related to these pathways. We found that the expression levels of <i>MAD2L1</i>, which can inhibit cell proliferation and promote apoptosis, and <i>Aurka</i>-b, which plays a crucial role in cell cycle regulation, were significantly reduced in <i>BmGDAP2</i><sup>KO</sup> silkworms. These changes may interfere with the normal functions of cell division, leading to the prolonged developmental cycle observed in <i>BmGDAP2</i><sup>KO</sup> larvae. Our findings demonstrate that knockout of <i>BmGDAP2</i> significantly prolongs the life cycle of <i>Bombyx mori</i> by affecting genes related to autophagy, apoptosis, and hormone regulation.</p>\",\"PeriodicalId\":13642,\"journal\":{\"name\":\"Insects\",\"volume\":\"16 4\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12028214/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insects\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/insects16040354\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insects","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/insects16040354","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
CRISPR/Cas9-Mediated Knockout of BmGDAP2 in the Silkworm, Bombyx mori: Extended Lifespan and Altered Gene Expression Impacting Developmental Pathways.
Ganglioside-induced differentiation-associated protein 2 (GDAP2) is a gene involved in hereditary cerebellar ataxia. At present, little is known about the function of GDAP2 in insects. In this study, BmGDAP2 was detected to be highly expressed in the head, epidermis, midgut, and anterior silk glands of silkworms. We generated a knockout mutant, BmGDAP2 (BmGDAP2KO), using the CRISPR/Cas9 system. Compared with that of the wild-type, the growth cycle of BmGDAP2KO larvae was significantly prolonged, while their body size was reduced. Furthermore, we found 149 differentially expressed genes (DEGs) between BmGDAP2KO and the wild-type, including 106 upregulated and 43 downregulated genes. GO annotation analysis indicated that BmGDAP2 primarily influences structural and molecular activities, as well as catalytic and binding functions. KEGG pathway analysis revealed that the differentially expressed genes were mainly enriched in pathways related to peroxidase activity, hormone synthesis, apoptosis, and longevity regulation. Further investigation focused on candidate genes related to these pathways. We found that the expression levels of MAD2L1, which can inhibit cell proliferation and promote apoptosis, and Aurka-b, which plays a crucial role in cell cycle regulation, were significantly reduced in BmGDAP2KO silkworms. These changes may interfere with the normal functions of cell division, leading to the prolonged developmental cycle observed in BmGDAP2KO larvae. Our findings demonstrate that knockout of BmGDAP2 significantly prolongs the life cycle of Bombyx mori by affecting genes related to autophagy, apoptosis, and hormone regulation.
InsectsAgricultural and Biological Sciences-Insect Science
CiteScore
5.10
自引率
10.00%
发文量
1013
审稿时长
21.77 days
期刊介绍:
Insects (ISSN 2075-4450) is an international, peer-reviewed open access journal of entomology published by MDPI online quarterly. It publishes reviews, research papers and communications related to the biology, physiology and the behavior of insects and arthropods. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.