DCM线粒体应激基因解码:迈向精准诊断与治疗。

IF 2.5 3区 生物学
Bingbing Zhu, Hai Cheng, Jiawei Li, Yangyang Hu, Xiaoning Ge
{"title":"DCM线粒体应激基因解码:迈向精准诊断与治疗。","authors":"Bingbing Zhu, Hai Cheng, Jiawei Li, Yangyang Hu, Xiaoning Ge","doi":"10.1186/s41065-025-00399-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mitochondrial oxidative stress (ROS) is a crucial factor in the pathogenesis of dilated cardiomyopathy (DCM). Despite its significance, robust biomarkers for assessing its role remain scarce. This study investigates ROS mechanisms in DCM and identifies associated biomarkers, offering fresh insights into diagnosis and treatment.</p><p><strong>Methods: </strong>We sourced transcriptomic data from the GEO database and mitochondrial oxidative stress-related genes from GeneCards. Using consensus clustering, we identified 64 genes associated with mitochondrial oxidative stress in DCM and further isolated five hub genes through protein-protein interaction and machine learning techniques. These genes were analyzed for functions related to immunity, drug sensitivity, and single-cell localization. Concurrently, we collected blood samples from DCM patients to validate the hub genes' expression.</p><p><strong>Results: </strong>The study identified five hub genes related to mitochondrial oxidative stress: VCL, ABCB1, JAK2, KDR, and NGF. Expression analysis revealed high levels of VCL, ABCB1, KDR, and NGF in the non-failing (NF) group, while JAK2 was elevated in the DCM group (p < 0.05). Diagnostic efficacy, measured by area under the curve (AUC), was significant for VCL (76.4), ABCB1 (80.1), JAK2 (68.2), KDR (78.1), and NGF (71.8). Moreover, several drugs were identified as potential regulators of these hub genes, including Topotecan, CDK9_5576, Acetalax, Afatinib, and GSK591. Notably, VCL showed increased expression in DCM patient blood samples, consistent with transcriptomic and single-cell findings.</p><p><strong>Conclusion: </strong>This research highlights key genes associated with mitochondrial oxidative stress-VCL, ABCB1, JAK2, KDR, NGF-that show differential expression in DCM and myocardial infarction. These findings underscore their diagnostic potential and pave the way for new therapeutic strategies.</p>","PeriodicalId":12862,"journal":{"name":"Hereditas","volume":"162 1","pages":"57"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11987231/pdf/","citationCount":"0","resultStr":"{\"title\":\"Decoding mitochondrial stress genes in DCM: towards precision diagnosis and therapy.\",\"authors\":\"Bingbing Zhu, Hai Cheng, Jiawei Li, Yangyang Hu, Xiaoning Ge\",\"doi\":\"10.1186/s41065-025-00399-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Mitochondrial oxidative stress (ROS) is a crucial factor in the pathogenesis of dilated cardiomyopathy (DCM). Despite its significance, robust biomarkers for assessing its role remain scarce. This study investigates ROS mechanisms in DCM and identifies associated biomarkers, offering fresh insights into diagnosis and treatment.</p><p><strong>Methods: </strong>We sourced transcriptomic data from the GEO database and mitochondrial oxidative stress-related genes from GeneCards. Using consensus clustering, we identified 64 genes associated with mitochondrial oxidative stress in DCM and further isolated five hub genes through protein-protein interaction and machine learning techniques. These genes were analyzed for functions related to immunity, drug sensitivity, and single-cell localization. Concurrently, we collected blood samples from DCM patients to validate the hub genes' expression.</p><p><strong>Results: </strong>The study identified five hub genes related to mitochondrial oxidative stress: VCL, ABCB1, JAK2, KDR, and NGF. Expression analysis revealed high levels of VCL, ABCB1, KDR, and NGF in the non-failing (NF) group, while JAK2 was elevated in the DCM group (p < 0.05). Diagnostic efficacy, measured by area under the curve (AUC), was significant for VCL (76.4), ABCB1 (80.1), JAK2 (68.2), KDR (78.1), and NGF (71.8). Moreover, several drugs were identified as potential regulators of these hub genes, including Topotecan, CDK9_5576, Acetalax, Afatinib, and GSK591. Notably, VCL showed increased expression in DCM patient blood samples, consistent with transcriptomic and single-cell findings.</p><p><strong>Conclusion: </strong>This research highlights key genes associated with mitochondrial oxidative stress-VCL, ABCB1, JAK2, KDR, NGF-that show differential expression in DCM and myocardial infarction. These findings underscore their diagnostic potential and pave the way for new therapeutic strategies.</p>\",\"PeriodicalId\":12862,\"journal\":{\"name\":\"Hereditas\",\"volume\":\"162 1\",\"pages\":\"57\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11987231/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hereditas\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s41065-025-00399-3\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hereditas","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s41065-025-00399-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:线粒体氧化应激(ROS)是扩张型心肌病(DCM)发病的关键因素。尽管其意义重大,但评估其作用的可靠生物标志物仍然很少。本研究探讨了ROS在DCM中的作用机制,并确定了相关的生物标志物,为DCM的诊断和治疗提供了新的见解。方法:我们从GEO数据库中获取转录组数据,从GeneCards中获取线粒体氧化应激相关基因。利用共识聚类,我们确定了64个与DCM线粒体氧化应激相关的基因,并通过蛋白质相互作用和机器学习技术进一步分离出5个中心基因。分析这些基因与免疫、药物敏感性和单细胞定位相关的功能。同时,我们收集了DCM患者的血液样本来验证枢纽基因的表达。结果:研究确定了5个与线粒体氧化应激相关的中心基因:VCL、ABCB1、JAK2、KDR和NGF。表达分析显示,VCL、ABCB1、KDR和NGF在非衰竭(NF)组中表达水平较高,而JAK2在DCM组中表达水平升高(p)。结论:本研究突出了与线粒体氧化应激相关的关键基因VCL、ABCB1、JAK2、KDR、NGF在DCM和心肌梗死中表达差异。这些发现强调了它们的诊断潜力,并为新的治疗策略铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decoding mitochondrial stress genes in DCM: towards precision diagnosis and therapy.

Background: Mitochondrial oxidative stress (ROS) is a crucial factor in the pathogenesis of dilated cardiomyopathy (DCM). Despite its significance, robust biomarkers for assessing its role remain scarce. This study investigates ROS mechanisms in DCM and identifies associated biomarkers, offering fresh insights into diagnosis and treatment.

Methods: We sourced transcriptomic data from the GEO database and mitochondrial oxidative stress-related genes from GeneCards. Using consensus clustering, we identified 64 genes associated with mitochondrial oxidative stress in DCM and further isolated five hub genes through protein-protein interaction and machine learning techniques. These genes were analyzed for functions related to immunity, drug sensitivity, and single-cell localization. Concurrently, we collected blood samples from DCM patients to validate the hub genes' expression.

Results: The study identified five hub genes related to mitochondrial oxidative stress: VCL, ABCB1, JAK2, KDR, and NGF. Expression analysis revealed high levels of VCL, ABCB1, KDR, and NGF in the non-failing (NF) group, while JAK2 was elevated in the DCM group (p < 0.05). Diagnostic efficacy, measured by area under the curve (AUC), was significant for VCL (76.4), ABCB1 (80.1), JAK2 (68.2), KDR (78.1), and NGF (71.8). Moreover, several drugs were identified as potential regulators of these hub genes, including Topotecan, CDK9_5576, Acetalax, Afatinib, and GSK591. Notably, VCL showed increased expression in DCM patient blood samples, consistent with transcriptomic and single-cell findings.

Conclusion: This research highlights key genes associated with mitochondrial oxidative stress-VCL, ABCB1, JAK2, KDR, NGF-that show differential expression in DCM and myocardial infarction. These findings underscore their diagnostic potential and pave the way for new therapeutic strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hereditas
Hereditas Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.80
自引率
3.70%
发文量
0
期刊介绍: For almost a century, Hereditas has published original cutting-edge research and reviews. As the Official journal of the Mendelian Society of Lund, the journal welcomes research from across all areas of genetics and genomics. Topics of interest include human and medical genetics, animal and plant genetics, microbial genetics, agriculture and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信