AMPK调控HIF-1α诱导棉铃虫蛹滞育。

IF 2.9 1区 农林科学 Q1 ENTOMOLOGY
Zhiren Su, Songshan Jiang, Wei-Hua Xu
{"title":"AMPK调控HIF-1α诱导棉铃虫蛹滞育。","authors":"Zhiren Su, Songshan Jiang, Wei-Hua Xu","doi":"10.1111/1744-7917.70068","DOIUrl":null,"url":null,"abstract":"<p><p>Diapause is an adaptive strategy employed by insects to endure adverse environmental conditions and is characterized by reduced metabolic activity, primarily due to a decreased respiratory rate. AMP-activated protein kinase (AMPK) serves as an intracellular energy regulator, modulating energy metabolism in response to metabolic fluctuations. However, its role in pupal diapause of the cotton bollworm, Helicoverpa armigera, remains unclear. In this study, we found that AMPK and its active form, P-AMPK, are highly expressed in diapause-destined pupae. Furthermore, activation of AMPK delayed the development of nondiapause-destined pupae, suggesting a critical role for AMPK in the regulation of pupal diapause in H. armigera. Manipulating AMPK activity in H. armigera epidermal (HaEpi) cells and pupae significantly influenced the expression of hypoxia-inducible factor-1α (HIF-1α), which our laboratory previously reported as a key inducer of pupal diapause through the reduction of mitochondrial activity in H. armigera. Histone deacetylase 4 (HDAC4), a shuttle protein phosphorylated by AMPK which translocates between the cytoplasm and the nucleus, was found to exhibit significantly higher expression in diapause-destined pupal brains compared to their nondiapause counterparts. AMPK in both HaEpi cells and pupae positively regulated the protein levels of P-HDAC4 by binding to the HDAC4 promoter. Additionally, HDAC4 was shown to enhance HIF-1α expression in diapause-destined individuals. HDAC4 binds to and deacetylates heat shock protein 70 (HSP70), and reduced acetylation of HSP70 was found to significantly elevate HIF-1α protein levels. The AMPK-HIF-1α signaling pathway appears to play a pivotal role in reducing mitochondrial activity and facilitating diapause induction in H. armigera pupae.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AMPK regulates HIF-1α to induce pupal diapause in the cotton bollworm, Helicoverpa armigera.\",\"authors\":\"Zhiren Su, Songshan Jiang, Wei-Hua Xu\",\"doi\":\"10.1111/1744-7917.70068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diapause is an adaptive strategy employed by insects to endure adverse environmental conditions and is characterized by reduced metabolic activity, primarily due to a decreased respiratory rate. AMP-activated protein kinase (AMPK) serves as an intracellular energy regulator, modulating energy metabolism in response to metabolic fluctuations. However, its role in pupal diapause of the cotton bollworm, Helicoverpa armigera, remains unclear. In this study, we found that AMPK and its active form, P-AMPK, are highly expressed in diapause-destined pupae. Furthermore, activation of AMPK delayed the development of nondiapause-destined pupae, suggesting a critical role for AMPK in the regulation of pupal diapause in H. armigera. Manipulating AMPK activity in H. armigera epidermal (HaEpi) cells and pupae significantly influenced the expression of hypoxia-inducible factor-1α (HIF-1α), which our laboratory previously reported as a key inducer of pupal diapause through the reduction of mitochondrial activity in H. armigera. Histone deacetylase 4 (HDAC4), a shuttle protein phosphorylated by AMPK which translocates between the cytoplasm and the nucleus, was found to exhibit significantly higher expression in diapause-destined pupal brains compared to their nondiapause counterparts. AMPK in both HaEpi cells and pupae positively regulated the protein levels of P-HDAC4 by binding to the HDAC4 promoter. Additionally, HDAC4 was shown to enhance HIF-1α expression in diapause-destined individuals. HDAC4 binds to and deacetylates heat shock protein 70 (HSP70), and reduced acetylation of HSP70 was found to significantly elevate HIF-1α protein levels. The AMPK-HIF-1α signaling pathway appears to play a pivotal role in reducing mitochondrial activity and facilitating diapause induction in H. armigera pupae.</p>\",\"PeriodicalId\":13618,\"journal\":{\"name\":\"Insect Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/1744-7917.70068\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1744-7917.70068","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

滞育是昆虫适应恶劣环境条件的一种策略,其特征是代谢活性降低,主要是由于呼吸速率降低。amp活化蛋白激酶(AMPK)作为细胞内能量调节剂,调节能量代谢以响应代谢波动。然而,其在棉铃虫(Helicoverpa armigera)蛹滞育中的作用尚不清楚。在这项研究中,我们发现AMPK及其活性形式P-AMPK在滞育蛹中高度表达。此外,AMPK的激活延迟了非滞育蛹的发育,这表明AMPK在棉铃虫蛹滞育的调控中起着关键作用。操纵棉铃虫表皮细胞(HaEpi)和蛹中AMPK的活性显著影响了缺氧诱导因子-1α (HIF-1α)的表达,该因子通过降低棉铃虫线粒体活性而成为蛹滞育的关键诱导剂。组蛋白去乙酰化酶4 (HDAC4)是一种被AMPK磷酸化的穿梭蛋白,在细胞质和细胞核之间易位,与非滞育的对偶蛋白相比,在滞育的蛹大脑中表现出显著更高的表达。在HaEpi细胞和蛹中,AMPK通过结合HDAC4启动子正向调节P-HDAC4的蛋白水平。此外,HDAC4被证明可以增强滞育个体中HIF-1α的表达。HDAC4结合热休克蛋白70 (HSP70)并使其去乙酰化,HSP70乙酰化降低可显著提高HIF-1α蛋白水平。AMPK-HIF-1α信号通路似乎在降低棉铃虫蛹线粒体活性和促进滞育诱导中起关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AMPK regulates HIF-1α to induce pupal diapause in the cotton bollworm, Helicoverpa armigera.

Diapause is an adaptive strategy employed by insects to endure adverse environmental conditions and is characterized by reduced metabolic activity, primarily due to a decreased respiratory rate. AMP-activated protein kinase (AMPK) serves as an intracellular energy regulator, modulating energy metabolism in response to metabolic fluctuations. However, its role in pupal diapause of the cotton bollworm, Helicoverpa armigera, remains unclear. In this study, we found that AMPK and its active form, P-AMPK, are highly expressed in diapause-destined pupae. Furthermore, activation of AMPK delayed the development of nondiapause-destined pupae, suggesting a critical role for AMPK in the regulation of pupal diapause in H. armigera. Manipulating AMPK activity in H. armigera epidermal (HaEpi) cells and pupae significantly influenced the expression of hypoxia-inducible factor-1α (HIF-1α), which our laboratory previously reported as a key inducer of pupal diapause through the reduction of mitochondrial activity in H. armigera. Histone deacetylase 4 (HDAC4), a shuttle protein phosphorylated by AMPK which translocates between the cytoplasm and the nucleus, was found to exhibit significantly higher expression in diapause-destined pupal brains compared to their nondiapause counterparts. AMPK in both HaEpi cells and pupae positively regulated the protein levels of P-HDAC4 by binding to the HDAC4 promoter. Additionally, HDAC4 was shown to enhance HIF-1α expression in diapause-destined individuals. HDAC4 binds to and deacetylates heat shock protein 70 (HSP70), and reduced acetylation of HSP70 was found to significantly elevate HIF-1α protein levels. The AMPK-HIF-1α signaling pathway appears to play a pivotal role in reducing mitochondrial activity and facilitating diapause induction in H. armigera pupae.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Insect Science
Insect Science 生物-昆虫学
CiteScore
7.80
自引率
5.00%
发文量
1379
审稿时长
6.0 months
期刊介绍: Insect Science is an English-language journal, which publishes original research articles dealing with all fields of research in into insects and other terrestrial arthropods. Papers in any of the following fields will be considered: ecology, behavior, biogeography, physiology, biochemistry, sociobiology, phylogeny, pest management, and exotic incursions. The emphasis of the journal is on the adaptation and evolutionary biology of insects from the molecular to the ecosystem level. Reviews, mini reviews and letters to the editor, book reviews, and information about academic activities of the society are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信