{"title":"基于锗基双源无掺杂线隧穿场效应晶体管的生物传感器仿真研究。","authors":"Junjie Huang, Hongxia Liu, Shupeng Chen, Shulong Wang, Chen Chong, Zhanpeng Yan, Xilong Zhou, Chang Liu","doi":"10.1088/1361-6528/add303","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we propose and investigate a biosensor based on germanium-based dual-source dopingless line-tunneling FET, which uses dielectric modulation to detect biomolecules. Dual source and line-tunneling structure improves open state current of the biosensor. The trench gate structure facilitates biomolecules filling and cavity etching while enhancing the tunneling area. The dopingless structure prevents the formation of mutant junctions and minimizes the effects of random dopant fluctuations. Simulation results show that the proposed biosensor demonstrates excellent performance, with a high switching ratio of 5.9 × 10<sup>11</sup>, a maximum threshold voltage sensitivity of 3.1 V, a maximum open state current sensitivity of 2.8 × 10<sup>6</sup>, a maximum average subthreshold swing (SS) sensitivity of 0.86, and the minimum average SS is 36.8 mv/decade. The proposed biosensor, exhibiting high sensitivity and low power consumption, holds significant application potential.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":"36 22","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation study of biosensor based on germanium-based dual-source dopingless line-tunneling FET.\",\"authors\":\"Junjie Huang, Hongxia Liu, Shupeng Chen, Shulong Wang, Chen Chong, Zhanpeng Yan, Xilong Zhou, Chang Liu\",\"doi\":\"10.1088/1361-6528/add303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we propose and investigate a biosensor based on germanium-based dual-source dopingless line-tunneling FET, which uses dielectric modulation to detect biomolecules. Dual source and line-tunneling structure improves open state current of the biosensor. The trench gate structure facilitates biomolecules filling and cavity etching while enhancing the tunneling area. The dopingless structure prevents the formation of mutant junctions and minimizes the effects of random dopant fluctuations. Simulation results show that the proposed biosensor demonstrates excellent performance, with a high switching ratio of 5.9 × 10<sup>11</sup>, a maximum threshold voltage sensitivity of 3.1 V, a maximum open state current sensitivity of 2.8 × 10<sup>6</sup>, a maximum average subthreshold swing (SS) sensitivity of 0.86, and the minimum average SS is 36.8 mv/decade. The proposed biosensor, exhibiting high sensitivity and low power consumption, holds significant application potential.</p>\",\"PeriodicalId\":19035,\"journal\":{\"name\":\"Nanotechnology\",\"volume\":\"36 22\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6528/add303\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/add303","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Simulation study of biosensor based on germanium-based dual-source dopingless line-tunneling FET.
In this paper, we propose and investigate a biosensor based on germanium-based dual-source dopingless line-tunneling FET, which uses dielectric modulation to detect biomolecules. Dual source and line-tunneling structure improves open state current of the biosensor. The trench gate structure facilitates biomolecules filling and cavity etching while enhancing the tunneling area. The dopingless structure prevents the formation of mutant junctions and minimizes the effects of random dopant fluctuations. Simulation results show that the proposed biosensor demonstrates excellent performance, with a high switching ratio of 5.9 × 1011, a maximum threshold voltage sensitivity of 3.1 V, a maximum open state current sensitivity of 2.8 × 106, a maximum average subthreshold swing (SS) sensitivity of 0.86, and the minimum average SS is 36.8 mv/decade. The proposed biosensor, exhibiting high sensitivity and low power consumption, holds significant application potential.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.