基于锗基双源无掺杂线隧穿场效应晶体管的生物传感器仿真研究。

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Junjie Huang, Hongxia Liu, Shupeng Chen, Shulong Wang, Chen Chong, Zhanpeng Yan, Xilong Zhou, Chang Liu
{"title":"基于锗基双源无掺杂线隧穿场效应晶体管的生物传感器仿真研究。","authors":"Junjie Huang, Hongxia Liu, Shupeng Chen, Shulong Wang, Chen Chong, Zhanpeng Yan, Xilong Zhou, Chang Liu","doi":"10.1088/1361-6528/add303","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we propose and investigate a biosensor based on germanium-based dual-source dopingless line-tunneling FET, which uses dielectric modulation to detect biomolecules. Dual source and line-tunneling structure improves open state current of the biosensor. The trench gate structure facilitates biomolecules filling and cavity etching while enhancing the tunneling area. The dopingless structure prevents the formation of mutant junctions and minimizes the effects of random dopant fluctuations. Simulation results show that the proposed biosensor demonstrates excellent performance, with a high switching ratio of 5.9 × 10<sup>11</sup>, a maximum threshold voltage sensitivity of 3.1 V, a maximum open state current sensitivity of 2.8 × 10<sup>6</sup>, a maximum average subthreshold swing (SS) sensitivity of 0.86, and the minimum average SS is 36.8 mv/decade. The proposed biosensor, exhibiting high sensitivity and low power consumption, holds significant application potential.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":"36 22","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation study of biosensor based on germanium-based dual-source dopingless line-tunneling FET.\",\"authors\":\"Junjie Huang, Hongxia Liu, Shupeng Chen, Shulong Wang, Chen Chong, Zhanpeng Yan, Xilong Zhou, Chang Liu\",\"doi\":\"10.1088/1361-6528/add303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we propose and investigate a biosensor based on germanium-based dual-source dopingless line-tunneling FET, which uses dielectric modulation to detect biomolecules. Dual source and line-tunneling structure improves open state current of the biosensor. The trench gate structure facilitates biomolecules filling and cavity etching while enhancing the tunneling area. The dopingless structure prevents the formation of mutant junctions and minimizes the effects of random dopant fluctuations. Simulation results show that the proposed biosensor demonstrates excellent performance, with a high switching ratio of 5.9 × 10<sup>11</sup>, a maximum threshold voltage sensitivity of 3.1 V, a maximum open state current sensitivity of 2.8 × 10<sup>6</sup>, a maximum average subthreshold swing (SS) sensitivity of 0.86, and the minimum average SS is 36.8 mv/decade. The proposed biosensor, exhibiting high sensitivity and low power consumption, holds significant application potential.</p>\",\"PeriodicalId\":19035,\"journal\":{\"name\":\"Nanotechnology\",\"volume\":\"36 22\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6528/add303\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/add303","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出并研究了一种基于锗基双源无掺杂线隧穿场效应管的生物传感器,该传感器使用介电调制来检测生物分子。双源和线隧结构改善了生物传感器的开路电流。壕沟栅结构有利于生物分子填充和空腔蚀刻,同时增大了隧道面积。无掺杂结构防止突变结的形成,并最大限度地减少随机掺杂波动的影响。仿真结果表明,该传感器具有优良的开关比5.9 × 1011,最大阈值电压灵敏度3.1 V,最大开路电流灵敏度2.8 × 106,最大平均亚阈值摆幅(SS)灵敏度0.86,最小平均SS为36.8 mv/ 10年。该传感器具有灵敏度高、功耗低的特点,具有重要的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation study of biosensor based on germanium-based dual-source dopingless line-tunneling FET.

In this paper, we propose and investigate a biosensor based on germanium-based dual-source dopingless line-tunneling FET, which uses dielectric modulation to detect biomolecules. Dual source and line-tunneling structure improves open state current of the biosensor. The trench gate structure facilitates biomolecules filling and cavity etching while enhancing the tunneling area. The dopingless structure prevents the formation of mutant junctions and minimizes the effects of random dopant fluctuations. Simulation results show that the proposed biosensor demonstrates excellent performance, with a high switching ratio of 5.9 × 1011, a maximum threshold voltage sensitivity of 3.1 V, a maximum open state current sensitivity of 2.8 × 106, a maximum average subthreshold swing (SS) sensitivity of 0.86, and the minimum average SS is 36.8 mv/decade. The proposed biosensor, exhibiting high sensitivity and low power consumption, holds significant application potential.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信