{"title":"空间预警信号在复杂网络动力学中的适用性。","authors":"Neil G MacLaren, Kazuyuki Aihara, Naoki Masuda","doi":"10.1098/rsif.2024.0696","DOIUrl":null,"url":null,"abstract":"<p><p>Early warning signals (EWSs) for complex dynamical systems aim to anticipate tipping points before they occur. While signals computed from time-series data, such as temporal variance, are useful for this task, they are costly to obtain in practice because they need many samples over time to calculate. Spatial EWSs use just a single sample per spatial location and aggregate the samples over space rather than time to try to mitigate this limitation. However, although many complex systems in nature and society form diverse networks, the performance of spatial EWSs is mostly unknown for general networks because the vast majority of studies of spatial EWSs have been on regular lattice networks. Therefore, we have carried out a comprehensive investigation of six major spatial EWSs on various networks. We find that the winning EWS depends on tipping scenarios, although the coefficient of variation and spatial skewness tend to outperform alternative EWSs. We also find that spatial EWSs behave in a drastically different manner between the square lattice and complex networks and tend to be more reliable for the latter than the former. The present results encourage further studies of spatial EWSs on complex networks.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 226","pages":"20240696"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12055298/pdf/","citationCount":"0","resultStr":"{\"title\":\"Applicability of spatial early warning signals to complex network dynamics.\",\"authors\":\"Neil G MacLaren, Kazuyuki Aihara, Naoki Masuda\",\"doi\":\"10.1098/rsif.2024.0696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Early warning signals (EWSs) for complex dynamical systems aim to anticipate tipping points before they occur. While signals computed from time-series data, such as temporal variance, are useful for this task, they are costly to obtain in practice because they need many samples over time to calculate. Spatial EWSs use just a single sample per spatial location and aggregate the samples over space rather than time to try to mitigate this limitation. However, although many complex systems in nature and society form diverse networks, the performance of spatial EWSs is mostly unknown for general networks because the vast majority of studies of spatial EWSs have been on regular lattice networks. Therefore, we have carried out a comprehensive investigation of six major spatial EWSs on various networks. We find that the winning EWS depends on tipping scenarios, although the coefficient of variation and spatial skewness tend to outperform alternative EWSs. We also find that spatial EWSs behave in a drastically different manner between the square lattice and complex networks and tend to be more reliable for the latter than the former. The present results encourage further studies of spatial EWSs on complex networks.</p>\",\"PeriodicalId\":17488,\"journal\":{\"name\":\"Journal of The Royal Society Interface\",\"volume\":\"22 226\",\"pages\":\"20240696\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12055298/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Royal Society Interface\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsif.2024.0696\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0696","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Applicability of spatial early warning signals to complex network dynamics.
Early warning signals (EWSs) for complex dynamical systems aim to anticipate tipping points before they occur. While signals computed from time-series data, such as temporal variance, are useful for this task, they are costly to obtain in practice because they need many samples over time to calculate. Spatial EWSs use just a single sample per spatial location and aggregate the samples over space rather than time to try to mitigate this limitation. However, although many complex systems in nature and society form diverse networks, the performance of spatial EWSs is mostly unknown for general networks because the vast majority of studies of spatial EWSs have been on regular lattice networks. Therefore, we have carried out a comprehensive investigation of six major spatial EWSs on various networks. We find that the winning EWS depends on tipping scenarios, although the coefficient of variation and spatial skewness tend to outperform alternative EWSs. We also find that spatial EWSs behave in a drastically different manner between the square lattice and complex networks and tend to be more reliable for the latter than the former. The present results encourage further studies of spatial EWSs on complex networks.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.