雄性小鼠膳食中添加无机、有机或纳米硒制剂:支持肠道-甲状腺-雄性生育轴假说的证据。

IF 7.4 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Redox Report Pub Date : 2025-12-01 Epub Date: 2025-04-25 DOI:10.1080/13510002.2025.2495367
A Mojadadi, A Au, T Ortiz Cerda, J-Y Shao, T O'Neil, K Bell-Anderson, J W Andersen, J Webb, W Salah, G Ahmad, H H Harris, P K Witting
{"title":"雄性小鼠膳食中添加无机、有机或纳米硒制剂:支持肠道-甲状腺-雄性生育轴假说的证据。","authors":"A Mojadadi, A Au, T Ortiz Cerda, J-Y Shao, T O'Neil, K Bell-Anderson, J W Andersen, J Webb, W Salah, G Ahmad, H H Harris, P K Witting","doi":"10.1080/13510002.2025.2495367","DOIUrl":null,"url":null,"abstract":"<p><p>Selenium (Se) is linked to physiological homeostasis. Male mice (n = 8/group) were fed control (AIN93G) or diets enriched in sodium selenite (NaSe, 5.6 ppm), methylselenocysteine (Met, 4.7 ppm), diphenyl diselenide (DPDS, 14.2 ppm), or nanoselenium (NanoSe, 2.7 ppm); dietary Se ascertained by inductively-coupled plasma mass spectrometry. At 4 weeks testes, sperm, thyroids, blood and stool were collected to assess histoarchitecture, circulating hormones (thyroxine, T4; triiodothyronine, T3; thyroid stimulating hormone, TSH) and gut microbiome (16S rRNAV3-V4 amplicon sequencing). Supplemented NaSe, Met, and NanoSe increased plasma testosterone and testis glutathione peroxidases (GPx-1/4) while testicular superoxide dismutase and catalase increased slightly in the NanoSe group indicating a selective antioxidant response. Overall, NanoSe and NaSe enhanced male reproductive factors. All thyroids isolated from Se-supplemented mice contained marginal vacuoles and a lower follicle area vs control. Nano-Se enhanced thyroidiodothyronine deiodinase-1 (DIO1) expression however, thyroid GPx-1/4 remained unchanged. Supplemented NaSe and DPDSl increased plasma T3/T4 ratio, while plasma TSH was unchanged. Microbiome analyses showed that NanoSe was most efficacious in altering composition (judged by α-diversity, Shannon index and taxon richness) while the NaSe diet showed the greatest overall change in α-diversity. Dietary Se supplementation, particularly encapsulated NanoSe, may improve male fertility factors by enhancing the gut-thyroid-fertility axis.</p>","PeriodicalId":21096,"journal":{"name":"Redox Report","volume":"30 1","pages":"2495367"},"PeriodicalIF":7.4000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035940/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dietary supplementation of male mice with inorganic, organic or nanoparticle selenium preparations: evidence supporting a putative gut-thyroid-male fertility axis.\",\"authors\":\"A Mojadadi, A Au, T Ortiz Cerda, J-Y Shao, T O'Neil, K Bell-Anderson, J W Andersen, J Webb, W Salah, G Ahmad, H H Harris, P K Witting\",\"doi\":\"10.1080/13510002.2025.2495367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Selenium (Se) is linked to physiological homeostasis. Male mice (n = 8/group) were fed control (AIN93G) or diets enriched in sodium selenite (NaSe, 5.6 ppm), methylselenocysteine (Met, 4.7 ppm), diphenyl diselenide (DPDS, 14.2 ppm), or nanoselenium (NanoSe, 2.7 ppm); dietary Se ascertained by inductively-coupled plasma mass spectrometry. At 4 weeks testes, sperm, thyroids, blood and stool were collected to assess histoarchitecture, circulating hormones (thyroxine, T4; triiodothyronine, T3; thyroid stimulating hormone, TSH) and gut microbiome (16S rRNAV3-V4 amplicon sequencing). Supplemented NaSe, Met, and NanoSe increased plasma testosterone and testis glutathione peroxidases (GPx-1/4) while testicular superoxide dismutase and catalase increased slightly in the NanoSe group indicating a selective antioxidant response. Overall, NanoSe and NaSe enhanced male reproductive factors. All thyroids isolated from Se-supplemented mice contained marginal vacuoles and a lower follicle area vs control. Nano-Se enhanced thyroidiodothyronine deiodinase-1 (DIO1) expression however, thyroid GPx-1/4 remained unchanged. Supplemented NaSe and DPDSl increased plasma T3/T4 ratio, while plasma TSH was unchanged. Microbiome analyses showed that NanoSe was most efficacious in altering composition (judged by α-diversity, Shannon index and taxon richness) while the NaSe diet showed the greatest overall change in α-diversity. Dietary Se supplementation, particularly encapsulated NanoSe, may improve male fertility factors by enhancing the gut-thyroid-fertility axis.</p>\",\"PeriodicalId\":21096,\"journal\":{\"name\":\"Redox Report\",\"volume\":\"30 1\",\"pages\":\"2495367\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035940/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Redox Report\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/13510002.2025.2495367\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Report","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/13510002.2025.2495367","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

硒(Se)与生理稳态有关。雄性小鼠(n = 8/组)饲喂对照(AIN93G)或富含亚硒酸钠(NaSe, 5.6 ppm)、甲基硒半胱氨酸(Met, 4.7 ppm)、二苯二硒(DPDS, 14.2 ppm)或纳米硒(NanoSe, 2.7 ppm)的饲料;用电感耦合等离子体质谱法测定膳食硒。4周时采集睾丸、精子、甲状腺、血液和粪便,评估组织结构、循环激素(甲状腺素、T4;三碘甲状腺氨酸,T3;促甲状腺激素(TSH)和肠道微生物组(16S rRNAV3-V4扩增子测序)。补充NaSe、Met和NanoSe可增加血浆睾酮和睾丸谷胱甘肽过氧化物酶(GPx-1/4),而睾丸超氧化物歧化酶和过氧化氢酶略有增加,表明NanoSe组具有选择性抗氧化反应。总的来说,纳米糖和NaSe增强了男性生殖因子。与对照组相比,硒补充小鼠分离的甲状腺均含有边缘空泡和更小的卵泡面积。纳米硒增强了甲状腺二聚甲状腺原氨酸脱碘酶-1 (DIO1)的表达,而甲状腺GPx-1/4保持不变。补充NaSe和DPDSl可提高血浆T3/T4比值,而血浆TSH不变。微生物组分析结果显示,纳米糖对群落组成(以α-多样性、Shannon指数和分类群丰富度判断)的影响最大,而NaSe日粮对α-多样性的影响最大。饲粮添加硒,特别是包埋纳米硒,可能通过增强肠-甲状腺-生育轴来改善男性生育因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dietary supplementation of male mice with inorganic, organic or nanoparticle selenium preparations: evidence supporting a putative gut-thyroid-male fertility axis.

Selenium (Se) is linked to physiological homeostasis. Male mice (n = 8/group) were fed control (AIN93G) or diets enriched in sodium selenite (NaSe, 5.6 ppm), methylselenocysteine (Met, 4.7 ppm), diphenyl diselenide (DPDS, 14.2 ppm), or nanoselenium (NanoSe, 2.7 ppm); dietary Se ascertained by inductively-coupled plasma mass spectrometry. At 4 weeks testes, sperm, thyroids, blood and stool were collected to assess histoarchitecture, circulating hormones (thyroxine, T4; triiodothyronine, T3; thyroid stimulating hormone, TSH) and gut microbiome (16S rRNAV3-V4 amplicon sequencing). Supplemented NaSe, Met, and NanoSe increased plasma testosterone and testis glutathione peroxidases (GPx-1/4) while testicular superoxide dismutase and catalase increased slightly in the NanoSe group indicating a selective antioxidant response. Overall, NanoSe and NaSe enhanced male reproductive factors. All thyroids isolated from Se-supplemented mice contained marginal vacuoles and a lower follicle area vs control. Nano-Se enhanced thyroidiodothyronine deiodinase-1 (DIO1) expression however, thyroid GPx-1/4 remained unchanged. Supplemented NaSe and DPDSl increased plasma T3/T4 ratio, while plasma TSH was unchanged. Microbiome analyses showed that NanoSe was most efficacious in altering composition (judged by α-diversity, Shannon index and taxon richness) while the NaSe diet showed the greatest overall change in α-diversity. Dietary Se supplementation, particularly encapsulated NanoSe, may improve male fertility factors by enhancing the gut-thyroid-fertility axis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Redox Report
Redox Report 生物-生化与分子生物学
CiteScore
6.10
自引率
0.00%
发文量
28
审稿时长
>12 weeks
期刊介绍: Redox Report is a multidisciplinary peer-reviewed open access journal focusing on the role of free radicals, oxidative stress, activated oxygen, perioxidative and redox processes, primarily in the human environment and human pathology. Relevant papers on the animal and plant environment, biology and pathology will also be included. While emphasis is placed upon methodological and intellectual advances underpinned by new data, the journal offers scope for review, hypotheses, critiques and other forms of discussion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信