利用机器学习的进步对网络进行鲁棒分类和解释。

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Royal Society Open Science Pub Date : 2025-04-30 eCollection Date: 2025-04-01 DOI:10.1098/rsos.240458
Raima Carol Appaw, Nicholas M Fountain-Jones, Michael A Charleston
{"title":"利用机器学习的进步对网络进行鲁棒分类和解释。","authors":"Raima Carol Appaw, Nicholas M Fountain-Jones, Michael A Charleston","doi":"10.1098/rsos.240458","DOIUrl":null,"url":null,"abstract":"<p><p>The ability to simulate realistic networks based on empirical data is an important task across scientific disciplines, from epidemiology to computer science. Often, simulation approaches involve selecting a suitable network generative model such as Erdös-Rényi or small-world. However, few tools are available to quantify if a particular generative model is suitable for capturing a given network structure or organization. We utilize advances in interpretable machine learning to classify simulated networks by our generative models based on various network attributes, using both primary features and their interactions. Our study underscores the significance of specific network features and their interactions in distinguishing generative models, comprehending complex network structures and the formation of real-world networks.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"12 4","pages":"240458"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12040445/pdf/","citationCount":"0","resultStr":"{\"title\":\"Leveraging advances in machine learning for the robust classification and interpretation of networks.\",\"authors\":\"Raima Carol Appaw, Nicholas M Fountain-Jones, Michael A Charleston\",\"doi\":\"10.1098/rsos.240458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ability to simulate realistic networks based on empirical data is an important task across scientific disciplines, from epidemiology to computer science. Often, simulation approaches involve selecting a suitable network generative model such as Erdös-Rényi or small-world. However, few tools are available to quantify if a particular generative model is suitable for capturing a given network structure or organization. We utilize advances in interpretable machine learning to classify simulated networks by our generative models based on various network attributes, using both primary features and their interactions. Our study underscores the significance of specific network features and their interactions in distinguishing generative models, comprehending complex network structures and the formation of real-world networks.</p>\",\"PeriodicalId\":21525,\"journal\":{\"name\":\"Royal Society Open Science\",\"volume\":\"12 4\",\"pages\":\"240458\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12040445/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Royal Society Open Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsos.240458\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.240458","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

从流行病学到计算机科学,基于经验数据模拟现实网络的能力是跨科学学科的重要任务。通常,仿真方法包括选择合适的网络生成模型,如Erdös-Rényi或小世界模型。然而,很少有工具可以量化特定的生成模型是否适合捕获给定的网络结构或组织。我们利用可解释机器学习的进展,通过基于各种网络属性的生成模型,使用主要特征及其相互作用,对模拟网络进行分类。我们的研究强调了特定网络特征及其相互作用在区分生成模型、理解复杂网络结构和形成现实世界网络方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging advances in machine learning for the robust classification and interpretation of networks.

The ability to simulate realistic networks based on empirical data is an important task across scientific disciplines, from epidemiology to computer science. Often, simulation approaches involve selecting a suitable network generative model such as Erdös-Rényi or small-world. However, few tools are available to quantify if a particular generative model is suitable for capturing a given network structure or organization. We utilize advances in interpretable machine learning to classify simulated networks by our generative models based on various network attributes, using both primary features and their interactions. Our study underscores the significance of specific network features and their interactions in distinguishing generative models, comprehending complex network structures and the formation of real-world networks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Royal Society Open Science
Royal Society Open Science Multidisciplinary-Multidisciplinary
CiteScore
6.00
自引率
0.00%
发文量
508
审稿时长
14 weeks
期刊介绍: Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review. The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信