Zachery Quince, Nicola Westerman, David Alonso-Caneiro, Scott A Read, Michael J Collins
{"title":"光学相干弹性成像在眼科和视觉科学中的前段应用:对固有测量技术和临床相关性的系统回顾。","authors":"Zachery Quince, Nicola Westerman, David Alonso-Caneiro, Scott A Read, Michael J Collins","doi":"10.1088/2516-1091/add4d9","DOIUrl":null,"url":null,"abstract":"<p><p>Optical coherence elastography (OCE) is a non-invasive imaging technique that measures the biomechanical properties of materials and tissues. This systematic review focuses on the applications of OCE in the anterior segment of the eye, including the cornea, iris, and crystalline lens, and its clinical relevance in diagnosing and managing ocular diseases. A systematic literature review was conducted using the PRISMA framework to identify studies published between 2014 and 2024. The review included studies that reported intrinsic biomechanical properties of anterior segment tissues measured using OCE. Databases searched included Scopus, Pub Med, and IEEE Xplore. Twenty-five studies met the inclusion criteria. The review found that OCE has been used to measure intrinsic biomechanical parameters such as Young's modulus and shear modulus in ocular tissues. OCE has been utilised to assess corneal stiffness in keratoconus, lens elasticity in presbyopia and cataract formation, and iris biomechanical changes under different lighting conditions. The studies demonstrated that OCE could detect subtle biomechanical changes associated with ocular diseases and measure treatment efficacy, such as collagen crosslinking for keratoconus management. The findings highlight the potential of OCE to enhance clinical diagnostics and patient care by providing detailed insights into the biomechanical properties of ocular tissues. However, variability in measurement techniques, the complexity of the method and reliance on animal models limit the current clinical translation of OCE. Standardised measurement protocols and further development and<i>in vivo</i>validation are needed to overcome these barriers. OCE shows promise as a valuable non-invasive tool for high-resolution assessments of tissue biomechanics, which can subsequently support the diagnosis and management of ocular diseases. Future research should focus on standardising OCE methods and integrating them into clinical practice to fully realise their potential in improving patient outcomes.</p>","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anterior segment applications of optical coherence elastography in ophthalmic and vision science: a systematic review of intrinsic measurement techniques and clinical relevance.\",\"authors\":\"Zachery Quince, Nicola Westerman, David Alonso-Caneiro, Scott A Read, Michael J Collins\",\"doi\":\"10.1088/2516-1091/add4d9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Optical coherence elastography (OCE) is a non-invasive imaging technique that measures the biomechanical properties of materials and tissues. This systematic review focuses on the applications of OCE in the anterior segment of the eye, including the cornea, iris, and crystalline lens, and its clinical relevance in diagnosing and managing ocular diseases. A systematic literature review was conducted using the PRISMA framework to identify studies published between 2014 and 2024. The review included studies that reported intrinsic biomechanical properties of anterior segment tissues measured using OCE. Databases searched included Scopus, Pub Med, and IEEE Xplore. Twenty-five studies met the inclusion criteria. The review found that OCE has been used to measure intrinsic biomechanical parameters such as Young's modulus and shear modulus in ocular tissues. OCE has been utilised to assess corneal stiffness in keratoconus, lens elasticity in presbyopia and cataract formation, and iris biomechanical changes under different lighting conditions. The studies demonstrated that OCE could detect subtle biomechanical changes associated with ocular diseases and measure treatment efficacy, such as collagen crosslinking for keratoconus management. The findings highlight the potential of OCE to enhance clinical diagnostics and patient care by providing detailed insights into the biomechanical properties of ocular tissues. However, variability in measurement techniques, the complexity of the method and reliance on animal models limit the current clinical translation of OCE. Standardised measurement protocols and further development and<i>in vivo</i>validation are needed to overcome these barriers. OCE shows promise as a valuable non-invasive tool for high-resolution assessments of tissue biomechanics, which can subsequently support the diagnosis and management of ocular diseases. Future research should focus on standardising OCE methods and integrating them into clinical practice to fully realise their potential in improving patient outcomes.</p>\",\"PeriodicalId\":74582,\"journal\":{\"name\":\"Progress in biomedical engineering (Bristol, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in biomedical engineering (Bristol, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2516-1091/add4d9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in biomedical engineering (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1091/add4d9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Anterior segment applications of optical coherence elastography in ophthalmic and vision science: a systematic review of intrinsic measurement techniques and clinical relevance.
Optical coherence elastography (OCE) is a non-invasive imaging technique that measures the biomechanical properties of materials and tissues. This systematic review focuses on the applications of OCE in the anterior segment of the eye, including the cornea, iris, and crystalline lens, and its clinical relevance in diagnosing and managing ocular diseases. A systematic literature review was conducted using the PRISMA framework to identify studies published between 2014 and 2024. The review included studies that reported intrinsic biomechanical properties of anterior segment tissues measured using OCE. Databases searched included Scopus, Pub Med, and IEEE Xplore. Twenty-five studies met the inclusion criteria. The review found that OCE has been used to measure intrinsic biomechanical parameters such as Young's modulus and shear modulus in ocular tissues. OCE has been utilised to assess corneal stiffness in keratoconus, lens elasticity in presbyopia and cataract formation, and iris biomechanical changes under different lighting conditions. The studies demonstrated that OCE could detect subtle biomechanical changes associated with ocular diseases and measure treatment efficacy, such as collagen crosslinking for keratoconus management. The findings highlight the potential of OCE to enhance clinical diagnostics and patient care by providing detailed insights into the biomechanical properties of ocular tissues. However, variability in measurement techniques, the complexity of the method and reliance on animal models limit the current clinical translation of OCE. Standardised measurement protocols and further development andin vivovalidation are needed to overcome these barriers. OCE shows promise as a valuable non-invasive tool for high-resolution assessments of tissue biomechanics, which can subsequently support the diagnosis and management of ocular diseases. Future research should focus on standardising OCE methods and integrating them into clinical practice to fully realise their potential in improving patient outcomes.