光学相干弹性成像在眼科和视觉科学中的前段应用:对固有测量技术和临床相关性的系统回顾。

IF 5 Q1 ENGINEERING, BIOMEDICAL
Zachery Quince, Nicola Westerman, David Alonso-Caneiro, Scott A Read, Michael J Collins
{"title":"光学相干弹性成像在眼科和视觉科学中的前段应用:对固有测量技术和临床相关性的系统回顾。","authors":"Zachery Quince, Nicola Westerman, David Alonso-Caneiro, Scott A Read, Michael J Collins","doi":"10.1088/2516-1091/add4d9","DOIUrl":null,"url":null,"abstract":"<p><p>Optical coherence elastography (OCE) is a non-invasive imaging technique that measures the biomechanical properties of materials and tissues. This systematic review focuses on the applications of OCE in the anterior segment of the eye, including the cornea, iris, and crystalline lens, and its clinical relevance in diagnosing and managing ocular diseases. A systematic literature review was conducted using the PRISMA framework to identify studies published between 2014 and 2024. The review included studies that reported intrinsic biomechanical properties of anterior segment tissues measured using OCE. Databases searched included Scopus, Pub Med, and IEEE Xplore. Twenty-five studies met the inclusion criteria. The review found that OCE has been used to measure intrinsic biomechanical parameters such as Young's modulus and shear modulus in ocular tissues. OCE has been utilised to assess corneal stiffness in keratoconus, lens elasticity in presbyopia and cataract formation, and iris biomechanical changes under different lighting conditions. The studies demonstrated that OCE could detect subtle biomechanical changes associated with ocular diseases and measure treatment efficacy, such as collagen crosslinking for keratoconus management. The findings highlight the potential of OCE to enhance clinical diagnostics and patient care by providing detailed insights into the biomechanical properties of ocular tissues. However, variability in measurement techniques, the complexity of the method and reliance on animal models limit the current clinical translation of OCE. Standardised measurement protocols and further development and<i>in vivo</i>validation are needed to overcome these barriers. OCE shows promise as a valuable non-invasive tool for high-resolution assessments of tissue biomechanics, which can subsequently support the diagnosis and management of ocular diseases. Future research should focus on standardising OCE methods and integrating them into clinical practice to fully realise their potential in improving patient outcomes.</p>","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anterior segment applications of optical coherence elastography in ophthalmic and vision science: a systematic review of intrinsic measurement techniques and clinical relevance.\",\"authors\":\"Zachery Quince, Nicola Westerman, David Alonso-Caneiro, Scott A Read, Michael J Collins\",\"doi\":\"10.1088/2516-1091/add4d9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Optical coherence elastography (OCE) is a non-invasive imaging technique that measures the biomechanical properties of materials and tissues. This systematic review focuses on the applications of OCE in the anterior segment of the eye, including the cornea, iris, and crystalline lens, and its clinical relevance in diagnosing and managing ocular diseases. A systematic literature review was conducted using the PRISMA framework to identify studies published between 2014 and 2024. The review included studies that reported intrinsic biomechanical properties of anterior segment tissues measured using OCE. Databases searched included Scopus, Pub Med, and IEEE Xplore. Twenty-five studies met the inclusion criteria. The review found that OCE has been used to measure intrinsic biomechanical parameters such as Young's modulus and shear modulus in ocular tissues. OCE has been utilised to assess corneal stiffness in keratoconus, lens elasticity in presbyopia and cataract formation, and iris biomechanical changes under different lighting conditions. The studies demonstrated that OCE could detect subtle biomechanical changes associated with ocular diseases and measure treatment efficacy, such as collagen crosslinking for keratoconus management. The findings highlight the potential of OCE to enhance clinical diagnostics and patient care by providing detailed insights into the biomechanical properties of ocular tissues. However, variability in measurement techniques, the complexity of the method and reliance on animal models limit the current clinical translation of OCE. Standardised measurement protocols and further development and<i>in vivo</i>validation are needed to overcome these barriers. OCE shows promise as a valuable non-invasive tool for high-resolution assessments of tissue biomechanics, which can subsequently support the diagnosis and management of ocular diseases. Future research should focus on standardising OCE methods and integrating them into clinical practice to fully realise their potential in improving patient outcomes.</p>\",\"PeriodicalId\":74582,\"journal\":{\"name\":\"Progress in biomedical engineering (Bristol, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in biomedical engineering (Bristol, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2516-1091/add4d9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in biomedical engineering (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1091/add4d9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

光学相干弹性成像(OCE)是一种非侵入性成像技术,用于测量材料和组织的生物力学特性。本文系统回顾了OCE在眼前段的应用,包括角膜、虹膜和晶状体,以及OCE在眼部疾病诊断和治疗中的临床意义。使用PRISMA框架进行了系统的文献综述,以确定2014年至2024年间发表的研究。这篇综述包括了用OCE测量前节组织内在生物力学特性的研究。检索的数据库包括Scopus、Pub Med和IEEE explore。25项研究符合纳入标准。回顾发现OCE已被用于测量眼组织的内在生物力学参数,如杨氏模量和剪切模量。OCE被用于评估圆锥角膜的角膜硬度,老花眼和白内障形成的晶状体弹性,以及不同光照条件下虹膜的生物力学变化。研究表明,OCE可以检测与眼部疾病相关的细微生物力学变化,并测量治疗效果,如圆锥角膜治疗中的胶原交联。该研究结果强调了OCE通过提供眼部组织生物力学特性的详细见解来增强临床诊断和患者护理的潜力。然而,测量技术的可变性、方法的复杂性和对动物模型的依赖限制了目前OCE的临床应用。为了克服这些障碍,需要标准化的测量方案以及进一步的开发和体内验证。OCE有望成为高分辨率组织生物力学评估的一种有价值的非侵入性工具,从而支持眼部疾病的诊断和治疗。未来的研究应侧重于标准化OCE方法并将其整合到临床实践中,以充分发挥其改善患者预后的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anterior segment applications of optical coherence elastography in ophthalmic and vision science: a systematic review of intrinsic measurement techniques and clinical relevance.

Optical coherence elastography (OCE) is a non-invasive imaging technique that measures the biomechanical properties of materials and tissues. This systematic review focuses on the applications of OCE in the anterior segment of the eye, including the cornea, iris, and crystalline lens, and its clinical relevance in diagnosing and managing ocular diseases. A systematic literature review was conducted using the PRISMA framework to identify studies published between 2014 and 2024. The review included studies that reported intrinsic biomechanical properties of anterior segment tissues measured using OCE. Databases searched included Scopus, Pub Med, and IEEE Xplore. Twenty-five studies met the inclusion criteria. The review found that OCE has been used to measure intrinsic biomechanical parameters such as Young's modulus and shear modulus in ocular tissues. OCE has been utilised to assess corneal stiffness in keratoconus, lens elasticity in presbyopia and cataract formation, and iris biomechanical changes under different lighting conditions. The studies demonstrated that OCE could detect subtle biomechanical changes associated with ocular diseases and measure treatment efficacy, such as collagen crosslinking for keratoconus management. The findings highlight the potential of OCE to enhance clinical diagnostics and patient care by providing detailed insights into the biomechanical properties of ocular tissues. However, variability in measurement techniques, the complexity of the method and reliance on animal models limit the current clinical translation of OCE. Standardised measurement protocols and further development andin vivovalidation are needed to overcome these barriers. OCE shows promise as a valuable non-invasive tool for high-resolution assessments of tissue biomechanics, which can subsequently support the diagnosis and management of ocular diseases. Future research should focus on standardising OCE methods and integrating them into clinical practice to fully realise their potential in improving patient outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信