农用化学品的比较遗传毒性研究:核异常、彗星试验和基因表达改变。

IF 1.5 4区 生物学 Q4 CELL BIOLOGY
Ankita Salunke, Parth Pandya, Bhumi Thakkar, Pragna Parikh
{"title":"农用化学品的比较遗传毒性研究:核异常、彗星试验和基因表达改变。","authors":"Ankita Salunke, Parth Pandya, Bhumi Thakkar, Pragna Parikh","doi":"10.1007/s11626-025-01030-5","DOIUrl":null,"url":null,"abstract":"<p><p>Agrochemicals (AGs) are known for their ability to have a negative impact on the health of non-target species, despite the fact that they are meant to protect agricultural plants from harmful pests. Catla catla (Hamilton, 1822) gill cells (ICG) were exposed to four AGs: insecticide (Imidacloprid (IMI)), fungicide (Curzate (CZ)), herbicide (pyrazosulfuron ethyl (PE)), and fertilizer micronutrients (MN) with sublethal concentrations 1/20th, 1/10th, and 1/5th of IC<sub>50</sub>, described here as low dose (LD), medium dose (MD), and high dose (HD), respectively. A significant dose-dependent increase in the nuclear abnormalities such as micronuclei formation, bi-nucleated, and lobbed nucleated cells was observed in ICG cells treated with AGs. Of all the AGs, maximum alterations were observed with the HD of IMI followed by CZ, PE, and MN. Concurrently, the genotoxicity was determined by performing comet assays with high dose of all AGs. The gene expression of dnmt and cyp p450 were also studied through q-PCR in ICG cells. The significant increase in expression as well as alteration in cyp p450 and dnmt sequence was reported in ICG cells exposed to HD of IMI. This suggests that IMI has a genotoxic effect and may lead to epigenetic alterations.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative genotoxicity study of agrochemicals: nuclear abnormalities, comet assay, and gene expression alterations.\",\"authors\":\"Ankita Salunke, Parth Pandya, Bhumi Thakkar, Pragna Parikh\",\"doi\":\"10.1007/s11626-025-01030-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Agrochemicals (AGs) are known for their ability to have a negative impact on the health of non-target species, despite the fact that they are meant to protect agricultural plants from harmful pests. Catla catla (Hamilton, 1822) gill cells (ICG) were exposed to four AGs: insecticide (Imidacloprid (IMI)), fungicide (Curzate (CZ)), herbicide (pyrazosulfuron ethyl (PE)), and fertilizer micronutrients (MN) with sublethal concentrations 1/20th, 1/10th, and 1/5th of IC<sub>50</sub>, described here as low dose (LD), medium dose (MD), and high dose (HD), respectively. A significant dose-dependent increase in the nuclear abnormalities such as micronuclei formation, bi-nucleated, and lobbed nucleated cells was observed in ICG cells treated with AGs. Of all the AGs, maximum alterations were observed with the HD of IMI followed by CZ, PE, and MN. Concurrently, the genotoxicity was determined by performing comet assays with high dose of all AGs. The gene expression of dnmt and cyp p450 were also studied through q-PCR in ICG cells. The significant increase in expression as well as alteration in cyp p450 and dnmt sequence was reported in ICG cells exposed to HD of IMI. This suggests that IMI has a genotoxic effect and may lead to epigenetic alterations.</p>\",\"PeriodicalId\":13340,\"journal\":{\"name\":\"In Vitro Cellular & Developmental Biology. Animal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In Vitro Cellular & Developmental Biology. Animal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11626-025-01030-5\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology. Animal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-025-01030-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,农用化学品(AGs)能够对非目标物种的健康产生负面影响,尽管它们旨在保护农业植物免受有害害虫的侵害。将Catla Catla (Hamilton, 1822)鳃细胞(ICG)分别暴露于杀虫剂(吡虫啉(IMI))、杀菌剂(Curzate (CZ))、除草剂(吡唑磺隆乙酯(PE))和肥料微量元素(MN) 4种AGs中,亚致死浓度分别为IC50的1/20、1/10和1/5,分别为低剂量(LD)、中剂量(MD)和高剂量(HD)。在AGs处理的ICG细胞中,观察到微核形成、双核和叶核细胞等核异常的显著剂量依赖性增加。在所有AGs中,IMI的HD变化最大,其次是CZ、PE和MN。同时,用高剂量的所有AGs进行彗星试验来确定遗传毒性。采用q-PCR方法研究ICG细胞中dnmt和cyp p450基因的表达。据报道,暴露于IMI HD的ICG细胞中,cyp p450和dnmt序列的表达显著增加以及改变。这表明IMI具有遗传毒性作用,并可能导致表观遗传改变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparative genotoxicity study of agrochemicals: nuclear abnormalities, comet assay, and gene expression alterations.

Agrochemicals (AGs) are known for their ability to have a negative impact on the health of non-target species, despite the fact that they are meant to protect agricultural plants from harmful pests. Catla catla (Hamilton, 1822) gill cells (ICG) were exposed to four AGs: insecticide (Imidacloprid (IMI)), fungicide (Curzate (CZ)), herbicide (pyrazosulfuron ethyl (PE)), and fertilizer micronutrients (MN) with sublethal concentrations 1/20th, 1/10th, and 1/5th of IC50, described here as low dose (LD), medium dose (MD), and high dose (HD), respectively. A significant dose-dependent increase in the nuclear abnormalities such as micronuclei formation, bi-nucleated, and lobbed nucleated cells was observed in ICG cells treated with AGs. Of all the AGs, maximum alterations were observed with the HD of IMI followed by CZ, PE, and MN. Concurrently, the genotoxicity was determined by performing comet assays with high dose of all AGs. The gene expression of dnmt and cyp p450 were also studied through q-PCR in ICG cells. The significant increase in expression as well as alteration in cyp p450 and dnmt sequence was reported in ICG cells exposed to HD of IMI. This suggests that IMI has a genotoxic effect and may lead to epigenetic alterations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
4.80%
发文量
96
审稿时长
3 months
期刊介绍: In Vitro Cellular & Developmental Biology - Animal is a journal of the Society for In Vitro Biology (SIVB). Original manuscripts reporting results of research in cellular, molecular, and developmental biology that employ or are relevant to organs, tissue, tumors, and cells in vitro will be considered for publication. Topics covered include: Biotechnology; Cell and Tissue Models; Cell Growth/Differentiation/Apoptosis; Cellular Pathology/Virology; Cytokines/Growth Factors/Adhesion Factors; Establishment of Cell Lines; Signal Transduction; Stem Cells; Toxicology/Chemical Carcinogenesis; Product Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信