基于温度驱动种群模型和害虫监测数据的首次田间入侵初始条件和时间估算:在木薯粉虱、烟粉虱中的应用

IF 3.5 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Journal of The Royal Society Interface Pub Date : 2025-05-01 Epub Date: 2025-05-07 DOI:10.1098/rsif.2025.0059
Frank Thomas Ndjomatchoua, Richard Olaf James Hamilton Stutt, Ritter A Guimapi, Luca Rossini, Christopher A Gilligan
{"title":"基于温度驱动种群模型和害虫监测数据的首次田间入侵初始条件和时间估算:在木薯粉虱、烟粉虱中的应用","authors":"Frank Thomas Ndjomatchoua, Richard Olaf James Hamilton Stutt, Ritter A Guimapi, Luca Rossini, Christopher A Gilligan","doi":"10.1098/rsif.2025.0059","DOIUrl":null,"url":null,"abstract":"<p><p>Empirical field data and simulation models are often used separately to monitor and analyse the dynamics of insect pest populations over time. Greater insight may be achieved when field data are used directly to parametrize population dynamic models. In this paper, we use a differential evolution algorithm to integrate mechanistic physiological-based population models and monitoring data to estimate the population density and the physiological age of the first cohort at the start of the field monitoring. We introduce an ad hoc temperature-driven life-cycle model of <i>Bemisia tabaci</i> in conjunction with field monitoring data. The likely date of local whitefly invasion is estimated, with a subsequent improvement of the model's predictive accuracy. The method allows computation of the likely date of the first field incursion by the pest and demonstrates that the initial physiological age somewhat neglected in prior studies can improve the accuracy of model simulations. Given the increasing availability of monitoring data and models describing terrestrial arthropods, the integration of monitoring data and simulation models to improve model prediction and pioneer invasion date estimate will lead to better decision-making in pest management.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 226","pages":"20250059"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12056672/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integration of temperature-driven population model and pest monitoring data to estimate initial conditions and timing of first field invasion: application to the cassava whitefly, <i>Bemisia tabaci</i>.\",\"authors\":\"Frank Thomas Ndjomatchoua, Richard Olaf James Hamilton Stutt, Ritter A Guimapi, Luca Rossini, Christopher A Gilligan\",\"doi\":\"10.1098/rsif.2025.0059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Empirical field data and simulation models are often used separately to monitor and analyse the dynamics of insect pest populations over time. Greater insight may be achieved when field data are used directly to parametrize population dynamic models. In this paper, we use a differential evolution algorithm to integrate mechanistic physiological-based population models and monitoring data to estimate the population density and the physiological age of the first cohort at the start of the field monitoring. We introduce an ad hoc temperature-driven life-cycle model of <i>Bemisia tabaci</i> in conjunction with field monitoring data. The likely date of local whitefly invasion is estimated, with a subsequent improvement of the model's predictive accuracy. The method allows computation of the likely date of the first field incursion by the pest and demonstrates that the initial physiological age somewhat neglected in prior studies can improve the accuracy of model simulations. Given the increasing availability of monitoring data and models describing terrestrial arthropods, the integration of monitoring data and simulation models to improve model prediction and pioneer invasion date estimate will lead to better decision-making in pest management.</p>\",\"PeriodicalId\":17488,\"journal\":{\"name\":\"Journal of The Royal Society Interface\",\"volume\":\"22 226\",\"pages\":\"20250059\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12056672/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Royal Society Interface\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsif.2025.0059\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2025.0059","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

实地经验数据和模拟模型经常分别用于监测和分析虫害种群随时间的动态。当现场数据直接用于人口动态模型的参数化时,可能会获得更深入的了解。在本文中,我们使用差分进化算法整合基于机械生理的种群模型和监测数据,以估计种群密度和野外监测开始时第一队列的生理年龄。我们结合现场监测数据,介绍了一个特别的温度驱动的烟粉虱生命周期模型。估计了当地白蝇入侵的可能日期,随后提高了模型的预测精度。该方法可以计算出害虫第一次入侵农田的可能日期,并表明在以前的研究中有些被忽视的初始生理年龄可以提高模型模拟的准确性。鉴于陆地节肢动物监测数据和模型的可用性日益增加,将监测数据与模拟模型相结合,以改进模型预测和先驱者入侵日期估计,将有助于更好地制定有害生物防治决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integration of temperature-driven population model and pest monitoring data to estimate initial conditions and timing of first field invasion: application to the cassava whitefly, Bemisia tabaci.

Empirical field data and simulation models are often used separately to monitor and analyse the dynamics of insect pest populations over time. Greater insight may be achieved when field data are used directly to parametrize population dynamic models. In this paper, we use a differential evolution algorithm to integrate mechanistic physiological-based population models and monitoring data to estimate the population density and the physiological age of the first cohort at the start of the field monitoring. We introduce an ad hoc temperature-driven life-cycle model of Bemisia tabaci in conjunction with field monitoring data. The likely date of local whitefly invasion is estimated, with a subsequent improvement of the model's predictive accuracy. The method allows computation of the likely date of the first field incursion by the pest and demonstrates that the initial physiological age somewhat neglected in prior studies can improve the accuracy of model simulations. Given the increasing availability of monitoring data and models describing terrestrial arthropods, the integration of monitoring data and simulation models to improve model prediction and pioneer invasion date estimate will lead to better decision-making in pest management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Royal Society Interface
Journal of The Royal Society Interface 综合性期刊-综合性期刊
CiteScore
7.10
自引率
2.60%
发文量
234
审稿时长
2.5 months
期刊介绍: J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信