{"title":"嗜酸乳杆菌胞外囊泡包被UiO-66-NH2@siRNA纳米颗粒用于溃疡性结肠炎靶向基因治疗和肠道菌群调节。","authors":"Chenyang Cui, Jiaze Tang, Jie Chen, Beining Zhang, Ruonan Li, Qiang Zhang, Chunjing Qiu, Rongchen Chen, Geng Min, Zhaowei Sun, Haibo Weng","doi":"10.1186/s12951-025-03376-0","DOIUrl":null,"url":null,"abstract":"<p><p>Ulcerative colitis (UC) is a complex and chronic inflammatory bowel disease whose pathogenesis involves genetic and environmental factors, which poses a challenge for treatment. Here, we have designed an innovative integrated therapeutic strategy using Lactobacillus acidophilus extracellular vesicles (EVs) to encapsulate UiO-66-NH<sub>2</sub> nanoparticles bounded with TNF-α siRNA (EVs@UiO-66-NH<sub>2</sub>@siRNA) for UC treatment. This system shows superior affinity to inflammation-related cells due to the Lactobacillus acidophilus EVs can maintain immune homeostasis by regulating the secretion of cytokines in vitro. siRNA can specifically target the key inflammatory TNF-α in UC and silence its gene expression, thereby regulating the process of inflammatory response. After oral administration, EVs@UiO-66-NH<sub>2</sub>@siRNA demonstrates an accurate delivery of TNF-α siRNA to colonize the colon site and exerts a siRNA therapeutic effect by inhibiting the expression of TNF-α, which alleviates the intestinal inflammation in DSS-induced UC model. Moreover, this system can modulate the types and compositional structures of gut microbiota and metabolites to achieve an anti-inflammatory phenotype, which is helpful for the repair of intestinal homeostasis. We also have proved that UiO-66-NH<sub>2</sub> nanoparticles exhibit a high loading capacity for TNF-α siRNA and good pH responsiveness, improving the potent release of siRNA in colon tissue. Collectively, the EVs@UiO-66-NH<sub>2</sub>@siRNA nano-delivery system demonstrate a feasible combination therapeutic strategy for UC through gut microecology modulation, immune regulation and TNF-α siRNA silence, which may provide a potential targeted treatment approach for inflammatory bowel disease.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"301"},"PeriodicalIF":10.6000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12007195/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lactobacillus acidophilus extracellular vesicles-coated UiO-66-NH<sub>2</sub>@siRNA nanoparticles for ulcerative colitis targeted gene therapy and gut microbiota modulation.\",\"authors\":\"Chenyang Cui, Jiaze Tang, Jie Chen, Beining Zhang, Ruonan Li, Qiang Zhang, Chunjing Qiu, Rongchen Chen, Geng Min, Zhaowei Sun, Haibo Weng\",\"doi\":\"10.1186/s12951-025-03376-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ulcerative colitis (UC) is a complex and chronic inflammatory bowel disease whose pathogenesis involves genetic and environmental factors, which poses a challenge for treatment. Here, we have designed an innovative integrated therapeutic strategy using Lactobacillus acidophilus extracellular vesicles (EVs) to encapsulate UiO-66-NH<sub>2</sub> nanoparticles bounded with TNF-α siRNA (EVs@UiO-66-NH<sub>2</sub>@siRNA) for UC treatment. This system shows superior affinity to inflammation-related cells due to the Lactobacillus acidophilus EVs can maintain immune homeostasis by regulating the secretion of cytokines in vitro. siRNA can specifically target the key inflammatory TNF-α in UC and silence its gene expression, thereby regulating the process of inflammatory response. After oral administration, EVs@UiO-66-NH<sub>2</sub>@siRNA demonstrates an accurate delivery of TNF-α siRNA to colonize the colon site and exerts a siRNA therapeutic effect by inhibiting the expression of TNF-α, which alleviates the intestinal inflammation in DSS-induced UC model. Moreover, this system can modulate the types and compositional structures of gut microbiota and metabolites to achieve an anti-inflammatory phenotype, which is helpful for the repair of intestinal homeostasis. We also have proved that UiO-66-NH<sub>2</sub> nanoparticles exhibit a high loading capacity for TNF-α siRNA and good pH responsiveness, improving the potent release of siRNA in colon tissue. Collectively, the EVs@UiO-66-NH<sub>2</sub>@siRNA nano-delivery system demonstrate a feasible combination therapeutic strategy for UC through gut microecology modulation, immune regulation and TNF-α siRNA silence, which may provide a potential targeted treatment approach for inflammatory bowel disease.</p>\",\"PeriodicalId\":16383,\"journal\":{\"name\":\"Journal of Nanobiotechnology\",\"volume\":\"23 1\",\"pages\":\"301\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12007195/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12951-025-03376-0\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03376-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Lactobacillus acidophilus extracellular vesicles-coated UiO-66-NH2@siRNA nanoparticles for ulcerative colitis targeted gene therapy and gut microbiota modulation.
Ulcerative colitis (UC) is a complex and chronic inflammatory bowel disease whose pathogenesis involves genetic and environmental factors, which poses a challenge for treatment. Here, we have designed an innovative integrated therapeutic strategy using Lactobacillus acidophilus extracellular vesicles (EVs) to encapsulate UiO-66-NH2 nanoparticles bounded with TNF-α siRNA (EVs@UiO-66-NH2@siRNA) for UC treatment. This system shows superior affinity to inflammation-related cells due to the Lactobacillus acidophilus EVs can maintain immune homeostasis by regulating the secretion of cytokines in vitro. siRNA can specifically target the key inflammatory TNF-α in UC and silence its gene expression, thereby regulating the process of inflammatory response. After oral administration, EVs@UiO-66-NH2@siRNA demonstrates an accurate delivery of TNF-α siRNA to colonize the colon site and exerts a siRNA therapeutic effect by inhibiting the expression of TNF-α, which alleviates the intestinal inflammation in DSS-induced UC model. Moreover, this system can modulate the types and compositional structures of gut microbiota and metabolites to achieve an anti-inflammatory phenotype, which is helpful for the repair of intestinal homeostasis. We also have proved that UiO-66-NH2 nanoparticles exhibit a high loading capacity for TNF-α siRNA and good pH responsiveness, improving the potent release of siRNA in colon tissue. Collectively, the EVs@UiO-66-NH2@siRNA nano-delivery system demonstrate a feasible combination therapeutic strategy for UC through gut microecology modulation, immune regulation and TNF-α siRNA silence, which may provide a potential targeted treatment approach for inflammatory bowel disease.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.