远端取代基2位含苄基的4-氧- tempo衍生物对抗坏血酸还原抗性的影响。

IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Karin Nagahama, Toshihide Yamasaki, Kohei Sano, Takahiro Mukai
{"title":"远端取代基2位含苄基的4-氧- tempo衍生物对抗坏血酸还原抗性的影响。","authors":"Karin Nagahama, Toshihide Yamasaki, Kohei Sano, Takahiro Mukai","doi":"10.1080/10715762.2025.2503839","DOIUrl":null,"url":null,"abstract":"<p><p>Nitroxides, which have unpaired electrons, find diverse applications owing to their characteristic redox and radical chemistries. To fine-tune the properties of nitroxide compounds for various applications, we investigated the effect of distant substituents on their reactivity. We synthesized 4-oxo-2,2,6,6-tetramethylpiperidine-<i>N</i>-oxyl (4-oxo-TEMPO) derivatives with electron-donating or electron-withdrawing groups at the para position of the benzyl group attached to the 2-position. The reactivities of these compounds were evaluated by measuring their second-order reaction rate constants with ascorbate using ESR spectroscopy. Density functional theory (DFT) calculations for each compound revealed a correlation between the charge of the N-O moiety and the second-order reaction rate constant. Notably, even substituents positioned far from the nitroxide center significantly affected the reductive reactivity with ascorbate. These findings suggest that both proximal and distal structural modifications can be leveraged to fine-tune nitroxide properties, providing a basis for the rational design of nitroxides with tailored reactivities.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"1-8"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distal substituents effect of 4-oxo-TEMPO derivatives bearing a benzyl group at the 2-position on the reduction resistance toward ascorbate.\",\"authors\":\"Karin Nagahama, Toshihide Yamasaki, Kohei Sano, Takahiro Mukai\",\"doi\":\"10.1080/10715762.2025.2503839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nitroxides, which have unpaired electrons, find diverse applications owing to their characteristic redox and radical chemistries. To fine-tune the properties of nitroxide compounds for various applications, we investigated the effect of distant substituents on their reactivity. We synthesized 4-oxo-2,2,6,6-tetramethylpiperidine-<i>N</i>-oxyl (4-oxo-TEMPO) derivatives with electron-donating or electron-withdrawing groups at the para position of the benzyl group attached to the 2-position. The reactivities of these compounds were evaluated by measuring their second-order reaction rate constants with ascorbate using ESR spectroscopy. Density functional theory (DFT) calculations for each compound revealed a correlation between the charge of the N-O moiety and the second-order reaction rate constant. Notably, even substituents positioned far from the nitroxide center significantly affected the reductive reactivity with ascorbate. These findings suggest that both proximal and distal structural modifications can be leveraged to fine-tune nitroxide properties, providing a basis for the rational design of nitroxides with tailored reactivities.</p>\",\"PeriodicalId\":12411,\"journal\":{\"name\":\"Free Radical Research\",\"volume\":\" \",\"pages\":\"1-8\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Free Radical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/10715762.2025.2503839\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10715762.2025.2503839","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

氮氧化物具有不成对电子,由于其氧化还原和自由基化学特性而有多种应用。为了调整氮氧化物化合物的性质,我们研究了远端取代基对其反应性的影响。我们合成了4-氧-2,2,6,6-四甲基哌啶- n-氧基(4-氧- tempo)衍生物,其给电子或吸电子基团位于连接2位的苄基对位上。用ESR光谱法测定了这些化合物与抗坏血酸的二级反应速率常数,评价了它们的反应活性。每种化合物的密度泛函理论(DFT)计算揭示了N-O部分的电荷与二级反应速率常数之间的相关性。值得注意的是,即使是远离氮氧化物中心的取代基也会显著影响与抗坏血酸的还原反应性。这些发现表明,可以利用近端和远端结构修饰来微调氮氧化物的性质,为合理设计具有定制反应性的氮氧化物提供基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distal substituents effect of 4-oxo-TEMPO derivatives bearing a benzyl group at the 2-position on the reduction resistance toward ascorbate.

Nitroxides, which have unpaired electrons, find diverse applications owing to their characteristic redox and radical chemistries. To fine-tune the properties of nitroxide compounds for various applications, we investigated the effect of distant substituents on their reactivity. We synthesized 4-oxo-2,2,6,6-tetramethylpiperidine-N-oxyl (4-oxo-TEMPO) derivatives with electron-donating or electron-withdrawing groups at the para position of the benzyl group attached to the 2-position. The reactivities of these compounds were evaluated by measuring their second-order reaction rate constants with ascorbate using ESR spectroscopy. Density functional theory (DFT) calculations for each compound revealed a correlation between the charge of the N-O moiety and the second-order reaction rate constant. Notably, even substituents positioned far from the nitroxide center significantly affected the reductive reactivity with ascorbate. These findings suggest that both proximal and distal structural modifications can be leveraged to fine-tune nitroxide properties, providing a basis for the rational design of nitroxides with tailored reactivities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Free Radical Research
Free Radical Research 生物-生化与分子生物学
CiteScore
6.70
自引率
0.00%
发文量
47
审稿时长
3 months
期刊介绍: Free Radical Research publishes high-quality research papers, hypotheses and reviews in free radicals and other reactive species in biological, clinical, environmental and other systems; redox signalling; antioxidants, including diet-derived antioxidants and other relevant aspects of human nutrition; and oxidative damage, mechanisms and measurement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信