番茄afdnet:基于多尺度聚焦扩散的番茄病害检测模型。

IF 4.1 2区 生物学 Q1 PLANT SCIENCES
Frontiers in Plant Science Pub Date : 2025-04-24 eCollection Date: 2025-01-01 DOI:10.3389/fpls.2025.1530070
Rijun Wang, Yesheng Chen, Fulong Liang, Xiangwei Mou, Guanghao Zhang, Hao Jin
{"title":"番茄afdnet:基于多尺度聚焦扩散的番茄病害检测模型。","authors":"Rijun Wang, Yesheng Chen, Fulong Liang, Xiangwei Mou, Guanghao Zhang, Hao Jin","doi":"10.3389/fpls.2025.1530070","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Tomatoes are one of the most economically significant crops worldwide, with their yield and quality heavily impacted by foliar diseases. Effective detection of these diseases is essential for enhancing agricultural productivity and mitigating economic losses. Current tomato leaf disease detection methods, however, encounter challenges in extracting multi-scale features, identifying small targets, and mitigating complex background interference.</p><p><strong>Methods: </strong>The multi-scale tomato leaf disease detection model Tomato Focus-Diffusion Network (TomaFDNet) was proposed to solve the above problems. The model utilizes a multi-scale focus-diffusion network (MSFDNet) alongside an efficient parallel multi-scale convolutional module (EPMSC) to significantly enhance the extraction of multi-scale features. This combination particularly strengthens the model's capability to detect small targets amidst complex backgrounds.</p><p><strong>Results and discussion: </strong>Experimental results show that TomaFDNet reaches a mean average precision (mAP) of 83.1% in detecting Early_blight, Late_blight, and Leaf_Mold on tomato leaves, outperforming classical object detection algorithms, including Faster R-CNN (mAP = 68.2%) and You Only Look Once (YOLO) series (v5: mAP = 75.5%, v7: mAP = 78.3%, v8: mAP = 78.9%, v9: mAP = 79%, v10: mAP = 77.5%, v11: mAP = 79.2%). Compared to the baseline YOLOv8 model, TomaFDNet achieves a 4.2% improvement in mAP, which is statistically significant (P < 0.01). These findings indicate that TomaFDNet offers a valid solution to the precise detection of tomato leaf diseases.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1530070"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12058865/pdf/","citationCount":"0","resultStr":"{\"title\":\"TomaFDNet: A multiscale focused diffusion-based model for tomato disease detection.\",\"authors\":\"Rijun Wang, Yesheng Chen, Fulong Liang, Xiangwei Mou, Guanghao Zhang, Hao Jin\",\"doi\":\"10.3389/fpls.2025.1530070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Tomatoes are one of the most economically significant crops worldwide, with their yield and quality heavily impacted by foliar diseases. Effective detection of these diseases is essential for enhancing agricultural productivity and mitigating economic losses. Current tomato leaf disease detection methods, however, encounter challenges in extracting multi-scale features, identifying small targets, and mitigating complex background interference.</p><p><strong>Methods: </strong>The multi-scale tomato leaf disease detection model Tomato Focus-Diffusion Network (TomaFDNet) was proposed to solve the above problems. The model utilizes a multi-scale focus-diffusion network (MSFDNet) alongside an efficient parallel multi-scale convolutional module (EPMSC) to significantly enhance the extraction of multi-scale features. This combination particularly strengthens the model's capability to detect small targets amidst complex backgrounds.</p><p><strong>Results and discussion: </strong>Experimental results show that TomaFDNet reaches a mean average precision (mAP) of 83.1% in detecting Early_blight, Late_blight, and Leaf_Mold on tomato leaves, outperforming classical object detection algorithms, including Faster R-CNN (mAP = 68.2%) and You Only Look Once (YOLO) series (v5: mAP = 75.5%, v7: mAP = 78.3%, v8: mAP = 78.9%, v9: mAP = 79%, v10: mAP = 77.5%, v11: mAP = 79.2%). Compared to the baseline YOLOv8 model, TomaFDNet achieves a 4.2% improvement in mAP, which is statistically significant (P < 0.01). These findings indicate that TomaFDNet offers a valid solution to the precise detection of tomato leaf diseases.</p>\",\"PeriodicalId\":12632,\"journal\":{\"name\":\"Frontiers in Plant Science\",\"volume\":\"16 \",\"pages\":\"1530070\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12058865/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fpls.2025.1530070\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2025.1530070","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

番茄是世界上最重要的经济作物之一,其产量和质量受到叶面病害的严重影响。有效发现这些疾病对于提高农业生产力和减轻经济损失至关重要。然而,目前的番茄叶病检测方法在多尺度特征提取、小目标识别和减轻复杂背景干扰等方面面临挑战。方法:针对上述问题,提出了多尺度番茄叶片病害检测模型番茄聚焦扩散网络(TomaFDNet)。该模型利用多尺度聚焦扩散网络(MSFDNet)和高效的并行多尺度卷积模块(EPMSC)显著增强了多尺度特征的提取。这种组合特别增强了模型在复杂背景中探测小目标的能力。结果与讨论:实验结果表明,TomaFDNet在番茄叶片上检测早疫病、晚疫病和叶霉的平均精度(mAP)达到83.1%,优于Faster R-CNN (mAP = 68.2%)和You Only Look Once (YOLO)系列(v5: mAP = 75.5%, v7: mAP = 78.3%, v8: mAP = 78.9%, v9: mAP = 79%, v10: mAP = 77.5%, v11: mAP = 79.2%)等经典目标检测算法。与基线YOLOv8模型相比,TomaFDNet的mAP提高了4.2%,差异有统计学意义(P < 0.01)。这些结果表明,TomaFDNet为番茄叶片病害的精确检测提供了有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TomaFDNet: A multiscale focused diffusion-based model for tomato disease detection.

Introduction: Tomatoes are one of the most economically significant crops worldwide, with their yield and quality heavily impacted by foliar diseases. Effective detection of these diseases is essential for enhancing agricultural productivity and mitigating economic losses. Current tomato leaf disease detection methods, however, encounter challenges in extracting multi-scale features, identifying small targets, and mitigating complex background interference.

Methods: The multi-scale tomato leaf disease detection model Tomato Focus-Diffusion Network (TomaFDNet) was proposed to solve the above problems. The model utilizes a multi-scale focus-diffusion network (MSFDNet) alongside an efficient parallel multi-scale convolutional module (EPMSC) to significantly enhance the extraction of multi-scale features. This combination particularly strengthens the model's capability to detect small targets amidst complex backgrounds.

Results and discussion: Experimental results show that TomaFDNet reaches a mean average precision (mAP) of 83.1% in detecting Early_blight, Late_blight, and Leaf_Mold on tomato leaves, outperforming classical object detection algorithms, including Faster R-CNN (mAP = 68.2%) and You Only Look Once (YOLO) series (v5: mAP = 75.5%, v7: mAP = 78.3%, v8: mAP = 78.9%, v9: mAP = 79%, v10: mAP = 77.5%, v11: mAP = 79.2%). Compared to the baseline YOLOv8 model, TomaFDNet achieves a 4.2% improvement in mAP, which is statistically significant (P < 0.01). These findings indicate that TomaFDNet offers a valid solution to the precise detection of tomato leaf diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Plant Science
Frontiers in Plant Science PLANT SCIENCES-
CiteScore
7.30
自引率
14.30%
发文量
4844
审稿时长
14 weeks
期刊介绍: In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches. Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信