SPOP突变通过CK2/PIAS1/SPOP轴在前列腺癌中增加PARP抑制剂的敏感性。

IF 6.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Hui Zhang, Lili Kong, Jinhui Li, Zhihan Liu, Yiting Zhao, Xiuyi Lv, Liangpei Wu, Lin Chai, Hongjie You, Jiabei Jin, Xinyi Cao, Zhong Zheng, Yadong Liu, Zejun Yan, Xiaofeng Jin
{"title":"SPOP突变通过CK2/PIAS1/SPOP轴在前列腺癌中增加PARP抑制剂的敏感性。","authors":"Hui Zhang, Lili Kong, Jinhui Li, Zhihan Liu, Yiting Zhao, Xiuyi Lv, Liangpei Wu, Lin Chai, Hongjie You, Jiabei Jin, Xinyi Cao, Zhong Zheng, Yadong Liu, Zejun Yan, Xiaofeng Jin","doi":"10.1172/jci.insight.186871","DOIUrl":null,"url":null,"abstract":"<p><p>It is well documented that impaired DNA damage repair (DDR) induces genomic instability that can efficiently increase the sensitivity of prostate cancer (PCa) cells to PARP inhibitors; however, the underlying mechanism remains elusive. Here, we found profound genomic instability in PCa cells with SPOP gene mutations and confirmed the sensitivity of SPOP-mutated PCa cells to olaparib-induced apoptosis. Mechanistically, we identified olaparib-induced CK2-mediated phosphorylation of PIAS1-S468, which in turn mediated SUMOylation of SPOP, thus promoting its E3 ligase activity in the DDR. Moreover, an abnormal CK2/PIAS1/SPOP axis due to SPOP mutations or defects in CK2-mediated phosphorylation of PIAS1, as well as SPOP inhibitor treatment, led to impaired DDR, thus increasing olaparib-induced apoptosis of PCa cells and enhancing olaparib sensitivity in animal models and patient-derived organoids. This suggested that disruption of the CK2/PIAS1/SPOP signaling axis could serve as an indicator for targeted therapy of PCa using a PARP inhibitor.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"10 8","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12016936/pdf/","citationCount":"0","resultStr":"{\"title\":\"SPOP mutations increase PARP inhibitor sensitivity via CK2/PIAS1/SPOP axis in prostate cancer.\",\"authors\":\"Hui Zhang, Lili Kong, Jinhui Li, Zhihan Liu, Yiting Zhao, Xiuyi Lv, Liangpei Wu, Lin Chai, Hongjie You, Jiabei Jin, Xinyi Cao, Zhong Zheng, Yadong Liu, Zejun Yan, Xiaofeng Jin\",\"doi\":\"10.1172/jci.insight.186871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is well documented that impaired DNA damage repair (DDR) induces genomic instability that can efficiently increase the sensitivity of prostate cancer (PCa) cells to PARP inhibitors; however, the underlying mechanism remains elusive. Here, we found profound genomic instability in PCa cells with SPOP gene mutations and confirmed the sensitivity of SPOP-mutated PCa cells to olaparib-induced apoptosis. Mechanistically, we identified olaparib-induced CK2-mediated phosphorylation of PIAS1-S468, which in turn mediated SUMOylation of SPOP, thus promoting its E3 ligase activity in the DDR. Moreover, an abnormal CK2/PIAS1/SPOP axis due to SPOP mutations or defects in CK2-mediated phosphorylation of PIAS1, as well as SPOP inhibitor treatment, led to impaired DDR, thus increasing olaparib-induced apoptosis of PCa cells and enhancing olaparib sensitivity in animal models and patient-derived organoids. This suggested that disruption of the CK2/PIAS1/SPOP signaling axis could serve as an indicator for targeted therapy of PCa using a PARP inhibitor.</p>\",\"PeriodicalId\":14722,\"journal\":{\"name\":\"JCI insight\",\"volume\":\"10 8\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12016936/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCI insight\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/jci.insight.186871\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.186871","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

有充分的证据表明,受损的DNA损伤修复(DDR)诱导基因组不稳定,可以有效地增加前列腺癌(PCa)细胞对PARP抑制剂的敏感性;然而,潜在的机制仍然难以捉摸。我们在SPOP基因突变的PCa细胞中发现了深刻的基因组不稳定性,并证实了SPOP突变的PCa细胞对奥拉帕尼诱导的凋亡的敏感性。在机制上,我们发现奥拉帕尼诱导ck2介导的PIAS1-S468磷酸化,进而介导SPOP的sumo化,从而促进其在DDR中的E3连接酶活性。此外,由于CK2介导的PIAS1磷酸化中的SPOP突变或缺陷,以及SPOP抑制剂治疗导致CK2/PIAS1/SPOP轴异常,导致DDR受损,从而增加了奥拉帕尼诱导的PCa细胞凋亡,增强了动物模型和患者来源的类器官中奥拉帕尼的敏感性。这表明CK2/PIAS1/SPOP信号轴的破坏可以作为使用PARP抑制剂靶向治疗PCa的一个指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SPOP mutations increase PARP inhibitor sensitivity via CK2/PIAS1/SPOP axis in prostate cancer.

It is well documented that impaired DNA damage repair (DDR) induces genomic instability that can efficiently increase the sensitivity of prostate cancer (PCa) cells to PARP inhibitors; however, the underlying mechanism remains elusive. Here, we found profound genomic instability in PCa cells with SPOP gene mutations and confirmed the sensitivity of SPOP-mutated PCa cells to olaparib-induced apoptosis. Mechanistically, we identified olaparib-induced CK2-mediated phosphorylation of PIAS1-S468, which in turn mediated SUMOylation of SPOP, thus promoting its E3 ligase activity in the DDR. Moreover, an abnormal CK2/PIAS1/SPOP axis due to SPOP mutations or defects in CK2-mediated phosphorylation of PIAS1, as well as SPOP inhibitor treatment, led to impaired DDR, thus increasing olaparib-induced apoptosis of PCa cells and enhancing olaparib sensitivity in animal models and patient-derived organoids. This suggested that disruption of the CK2/PIAS1/SPOP signaling axis could serve as an indicator for targeted therapy of PCa using a PARP inhibitor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JCI insight
JCI insight Medicine-General Medicine
CiteScore
13.70
自引率
1.20%
发文量
543
审稿时长
6 weeks
期刊介绍: JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信