Xiaogang Feng, Wei Gao, Wenjie Dong, Yijing Chen, Robert W Murphy, Yaping Zhang, Jing Che
{"title":"lncrna的全基因组挖掘揭示了它们在胎生进化中的潜在调节作用。","authors":"Xiaogang Feng, Wei Gao, Wenjie Dong, Yijing Chen, Robert W Murphy, Yaping Zhang, Jing Che","doi":"10.1111/1749-4877.12992","DOIUrl":null,"url":null,"abstract":"<p><p>Reproduction in vertebrates usually involves egg-laying (oviparity) or live-bearing (viviparity). Oviparity is the ancestral trait from which viviparity has independently evolved more than 100 times in squamate reptiles. This transition involves a series of physiological and structural changes, including the degeneration of eggshell and the evolution of a placenta and differences in the temporal and spatial expression patterns of some functional genes that drive the structural transformation. Long non-coding RNAs (lncRNAs) play important roles in the regulation of gene expression, yet it remains unclear whether they participate in gene expression shifts during the transition from oviparity to viviparity, and if so how. Therefore, we employ deep mining to identify novel lncRNAs of a closely related oviparous-viviparous pair of lizards (Phrynocephalus przewalskii and P. vlangalii). We construct cis- and trans-regulatory networks between lncRNAs and target genes using the transcriptomic data of oviduct or uteri tissues across reproductive periods. Results show that lncRNAs that regulate eggshell gland developmental genes in the oviparous lizard are lost or less expressed in the viviparous lizard. A number of lncRNAs involved in the regulation of placental development and embryo attachment in viviparous species have no orthologs in oviparous species, and others show little or no expression. Accordingly, lncRNAs may play important regulatory roles in the physiological and structural changes in the transition from oviparity to viviparity. These results open doors to the further elucidation of genetic regulatory networks.</p>","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome-Wide Mining of lncRNAs Reveals Their Potential Regulatory Role in the Evolution of Viviparity.\",\"authors\":\"Xiaogang Feng, Wei Gao, Wenjie Dong, Yijing Chen, Robert W Murphy, Yaping Zhang, Jing Che\",\"doi\":\"10.1111/1749-4877.12992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reproduction in vertebrates usually involves egg-laying (oviparity) or live-bearing (viviparity). Oviparity is the ancestral trait from which viviparity has independently evolved more than 100 times in squamate reptiles. This transition involves a series of physiological and structural changes, including the degeneration of eggshell and the evolution of a placenta and differences in the temporal and spatial expression patterns of some functional genes that drive the structural transformation. Long non-coding RNAs (lncRNAs) play important roles in the regulation of gene expression, yet it remains unclear whether they participate in gene expression shifts during the transition from oviparity to viviparity, and if so how. Therefore, we employ deep mining to identify novel lncRNAs of a closely related oviparous-viviparous pair of lizards (Phrynocephalus przewalskii and P. vlangalii). We construct cis- and trans-regulatory networks between lncRNAs and target genes using the transcriptomic data of oviduct or uteri tissues across reproductive periods. Results show that lncRNAs that regulate eggshell gland developmental genes in the oviparous lizard are lost or less expressed in the viviparous lizard. A number of lncRNAs involved in the regulation of placental development and embryo attachment in viviparous species have no orthologs in oviparous species, and others show little or no expression. Accordingly, lncRNAs may play important regulatory roles in the physiological and structural changes in the transition from oviparity to viviparity. These results open doors to the further elucidation of genetic regulatory networks.</p>\",\"PeriodicalId\":13654,\"journal\":{\"name\":\"Integrative zoology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/1749-4877.12992\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1749-4877.12992","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
Genome-Wide Mining of lncRNAs Reveals Their Potential Regulatory Role in the Evolution of Viviparity.
Reproduction in vertebrates usually involves egg-laying (oviparity) or live-bearing (viviparity). Oviparity is the ancestral trait from which viviparity has independently evolved more than 100 times in squamate reptiles. This transition involves a series of physiological and structural changes, including the degeneration of eggshell and the evolution of a placenta and differences in the temporal and spatial expression patterns of some functional genes that drive the structural transformation. Long non-coding RNAs (lncRNAs) play important roles in the regulation of gene expression, yet it remains unclear whether they participate in gene expression shifts during the transition from oviparity to viviparity, and if so how. Therefore, we employ deep mining to identify novel lncRNAs of a closely related oviparous-viviparous pair of lizards (Phrynocephalus przewalskii and P. vlangalii). We construct cis- and trans-regulatory networks between lncRNAs and target genes using the transcriptomic data of oviduct or uteri tissues across reproductive periods. Results show that lncRNAs that regulate eggshell gland developmental genes in the oviparous lizard are lost or less expressed in the viviparous lizard. A number of lncRNAs involved in the regulation of placental development and embryo attachment in viviparous species have no orthologs in oviparous species, and others show little or no expression. Accordingly, lncRNAs may play important regulatory roles in the physiological and structural changes in the transition from oviparity to viviparity. These results open doors to the further elucidation of genetic regulatory networks.
期刊介绍:
The official journal of the International Society of Zoological Sciences focuses on zoology as an integrative discipline encompassing all aspects of animal life. It presents a broader perspective of many levels of zoological inquiry, both spatial and temporal, and encourages cooperation between zoology and other disciplines including, but not limited to, physics, computer science, social science, ethics, teaching, paleontology, molecular biology, physiology, behavior, ecology and the built environment. It also looks at the animal-human interaction through exploring animal-plant interactions, microbe/pathogen effects and global changes on the environment and human society.
Integrative topics of greatest interest to INZ include:
(1) Animals & climate change
(2) Animals & pollution
(3) Animals & infectious diseases
(4) Animals & biological invasions
(5) Animal-plant interactions
(6) Zoogeography & paleontology
(7) Neurons, genes & behavior
(8) Molecular ecology & evolution
(9) Physiological adaptations