法瑞罗对映体体内过程的立体选择性及生物活性。

IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Lirong Chen, Tang Yan, Dongting Huang, Wei Xu, Yongjing Liu, Xiaoying Wang, Hua Li
{"title":"法瑞罗对映体体内过程的立体选择性及生物活性。","authors":"Lirong Chen, Tang Yan, Dongting Huang, Wei Xu, Yongjing Liu, Xiaoying Wang, Hua Li","doi":"10.3390/molecules30092038","DOIUrl":null,"url":null,"abstract":"<p><p>Farrerol, a bioactive compound found in Folium Rhododendri daurici, demonstrates various biological and pharmacological effects. Nevertheless, the stereoselectivity of in vivo processes and bioactivity between its enantiomers have not been thoroughly investigated. This study aimed to explore the stereoselectivity and pharmacological activity variations in farrerol enantiomers, focusing on stereoselective pharmacokinetics, tissue distribution, in vitro metabolism using liver microsomes, in vivo intestinal absorption, molecular simulations of binding affinity with antiproliferative target, and cell viability assessed through the CCK-8 assay. The findings indicated that the pharmacokinetic characteristics of farrerol in rats' plasma, liver, and kidney tissues displayed enantioselectivity after intragastric administration. Then, no chiral transformation between farrerol enantiomers was observed in the rat plasma when (+)-farrerol and (-)-farrerol were orally administered. Additionally, there are notable stereoselective differences in the inhibition of CYP 1A2, CYP 2C9, CYP 2C19, and CYP 3A4/5 enzymes by (+)-farrerol and (-)-farrerol (<i>p</i> < 0.01). These differences may contribute to the stereoselectivity observed in the hepatic metabolism of the two enantiomers of farrerol. In addition, there were selective differences in the binding of farrerol enantiomers to anti-proliferative targets, including UCHL3, STAT3β, PTP1B, and GSK3β. Farrerol enantiomers exhibited similar growth inhibitory effects in HT-29 cell. Overall, our work will provide a solid theoretical basis and experimental reference for the further development and utilization of farrerol enantiomers.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 9","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073438/pdf/","citationCount":"0","resultStr":"{\"title\":\"Stereoselectivity of In Vivo Processes and Bioactivity of Farrerol Enantiomers.\",\"authors\":\"Lirong Chen, Tang Yan, Dongting Huang, Wei Xu, Yongjing Liu, Xiaoying Wang, Hua Li\",\"doi\":\"10.3390/molecules30092038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Farrerol, a bioactive compound found in Folium Rhododendri daurici, demonstrates various biological and pharmacological effects. Nevertheless, the stereoselectivity of in vivo processes and bioactivity between its enantiomers have not been thoroughly investigated. This study aimed to explore the stereoselectivity and pharmacological activity variations in farrerol enantiomers, focusing on stereoselective pharmacokinetics, tissue distribution, in vitro metabolism using liver microsomes, in vivo intestinal absorption, molecular simulations of binding affinity with antiproliferative target, and cell viability assessed through the CCK-8 assay. The findings indicated that the pharmacokinetic characteristics of farrerol in rats' plasma, liver, and kidney tissues displayed enantioselectivity after intragastric administration. Then, no chiral transformation between farrerol enantiomers was observed in the rat plasma when (+)-farrerol and (-)-farrerol were orally administered. Additionally, there are notable stereoselective differences in the inhibition of CYP 1A2, CYP 2C9, CYP 2C19, and CYP 3A4/5 enzymes by (+)-farrerol and (-)-farrerol (<i>p</i> < 0.01). These differences may contribute to the stereoselectivity observed in the hepatic metabolism of the two enantiomers of farrerol. In addition, there were selective differences in the binding of farrerol enantiomers to anti-proliferative targets, including UCHL3, STAT3β, PTP1B, and GSK3β. Farrerol enantiomers exhibited similar growth inhibitory effects in HT-29 cell. Overall, our work will provide a solid theoretical basis and experimental reference for the further development and utilization of farrerol enantiomers.</p>\",\"PeriodicalId\":19041,\"journal\":{\"name\":\"Molecules\",\"volume\":\"30 9\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073438/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/molecules30092038\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30092038","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

法罗醇是一种从杜鹃花叶中发现的生物活性化合物,具有多种生物学和药理作用。然而,体内过程的立体选择性和其对映体之间的生物活性尚未得到彻底的研究。本研究旨在探讨法瑞罗对映体的立体选择性和药理活性变化,重点关注立体选择性药代动力学、组织分布、肝微粒体体外代谢、体内肠道吸收、与抗增殖靶点结合亲和力的分子模拟以及通过CCK-8测定的细胞活力。结果表明,法罗罗灌胃后在大鼠血浆、肝脏和肾脏组织中的药代动力学特征表现出对映选择性。然后,口服(+)-法瑞罗和(-)-法瑞罗时,大鼠血浆中没有观察到法瑞罗对映体之间的手性转化。此外,(+)-法罗醇和(-)-法罗醇对CYP 1A2、CYP 2C9、CYP 2C19和CYP 3A4/5酶的抑制存在显著的立体选择性差异(p < 0.01)。这些差异可能有助于在法瑞罗的两种对映体的肝脏代谢中观察到立体选择性。此外,法罗罗对映体与抗增殖靶点(包括UCHL3、STAT3β、PTP1B和GSK3β)的结合存在选择性差异。法瑞罗对映体在HT-29细胞中表现出类似的生长抑制作用。本研究将为进一步开发和利用法罗罗对映体提供坚实的理论基础和实验参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stereoselectivity of In Vivo Processes and Bioactivity of Farrerol Enantiomers.

Farrerol, a bioactive compound found in Folium Rhododendri daurici, demonstrates various biological and pharmacological effects. Nevertheless, the stereoselectivity of in vivo processes and bioactivity between its enantiomers have not been thoroughly investigated. This study aimed to explore the stereoselectivity and pharmacological activity variations in farrerol enantiomers, focusing on stereoselective pharmacokinetics, tissue distribution, in vitro metabolism using liver microsomes, in vivo intestinal absorption, molecular simulations of binding affinity with antiproliferative target, and cell viability assessed through the CCK-8 assay. The findings indicated that the pharmacokinetic characteristics of farrerol in rats' plasma, liver, and kidney tissues displayed enantioselectivity after intragastric administration. Then, no chiral transformation between farrerol enantiomers was observed in the rat plasma when (+)-farrerol and (-)-farrerol were orally administered. Additionally, there are notable stereoselective differences in the inhibition of CYP 1A2, CYP 2C9, CYP 2C19, and CYP 3A4/5 enzymes by (+)-farrerol and (-)-farrerol (p < 0.01). These differences may contribute to the stereoselectivity observed in the hepatic metabolism of the two enantiomers of farrerol. In addition, there were selective differences in the binding of farrerol enantiomers to anti-proliferative targets, including UCHL3, STAT3β, PTP1B, and GSK3β. Farrerol enantiomers exhibited similar growth inhibitory effects in HT-29 cell. Overall, our work will provide a solid theoretical basis and experimental reference for the further development and utilization of farrerol enantiomers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecules
Molecules 化学-有机化学
CiteScore
7.40
自引率
8.70%
发文量
7524
审稿时长
1.4 months
期刊介绍: Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信