{"title":"外源性氧化植物甾醇可能通过上调脂肪酸去饱和酶调节大鼠亚油酸代谢。","authors":"Tomonari Koyama, Kyoichi Osada","doi":"10.1002/lipd.12444","DOIUrl":null,"url":null,"abstract":"<p><p>Previous in vitro studies have indicated that oxidized phytosterol (OPS) exhibits some toxicity; however, the harmful effects of OPS on fatty acid metabolism are not completely understood yet. Therefore, this study examined the effects of exogenous phytosterol (PS) and OPS on growth parameters and lipid metabolism in rats. Rats were provided with AIN-76 basal diet, basal diet +0.5% PS, or basal diet +0.5% OPS. We found that the level of cholesterol and triacylglycerols in the liver was significantly lower in OPS-fed rats than in basal diet-fed rats. The ratio of Δ6 desaturation index (20:3(n-6) + 20:4(n-6))/18:2(n-6) in the plasma was significantly higher in the OPS-fed rats than in the PS-fed rats. Additionally, the proportion of arachidonic acid (20:4) in the liver was significantly higher in the OPS-fed group compared with the control group. The mRNA expression levels of Δ6 and Δ5 desaturases were significantly higher in OPS-fed rats than in basal diet-fed rats, but remained unchanged in PS-fed rats. Moreover, the protein level of Δ6 desaturase was significantly higher in both PS- and OPS-fed rats compared with basal diet-fed rats, while the protein level of Δ5 desaturase tended to be higher only in OPS-fed rats than in basal diet-fed rats. Thus, exogenous OPS, but not PS, altered fatty acid composition through the upregulation of mRNA and protein levels of fatty acid desaturation enzymes in the liver. This indicates that exogenous OPS, unlike PS, may modulate the production of eicosanoids from arachidonic acid, potentially promoting allergic reactions, inflammation, and atherosclerosis.</p>","PeriodicalId":18086,"journal":{"name":"Lipids","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exogenous oxidized phytosterol may modulate linoleic acid metabolism through upregulation of fatty acid desaturase in rats.\",\"authors\":\"Tomonari Koyama, Kyoichi Osada\",\"doi\":\"10.1002/lipd.12444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Previous in vitro studies have indicated that oxidized phytosterol (OPS) exhibits some toxicity; however, the harmful effects of OPS on fatty acid metabolism are not completely understood yet. Therefore, this study examined the effects of exogenous phytosterol (PS) and OPS on growth parameters and lipid metabolism in rats. Rats were provided with AIN-76 basal diet, basal diet +0.5% PS, or basal diet +0.5% OPS. We found that the level of cholesterol and triacylglycerols in the liver was significantly lower in OPS-fed rats than in basal diet-fed rats. The ratio of Δ6 desaturation index (20:3(n-6) + 20:4(n-6))/18:2(n-6) in the plasma was significantly higher in the OPS-fed rats than in the PS-fed rats. Additionally, the proportion of arachidonic acid (20:4) in the liver was significantly higher in the OPS-fed group compared with the control group. The mRNA expression levels of Δ6 and Δ5 desaturases were significantly higher in OPS-fed rats than in basal diet-fed rats, but remained unchanged in PS-fed rats. Moreover, the protein level of Δ6 desaturase was significantly higher in both PS- and OPS-fed rats compared with basal diet-fed rats, while the protein level of Δ5 desaturase tended to be higher only in OPS-fed rats than in basal diet-fed rats. Thus, exogenous OPS, but not PS, altered fatty acid composition through the upregulation of mRNA and protein levels of fatty acid desaturation enzymes in the liver. This indicates that exogenous OPS, unlike PS, may modulate the production of eicosanoids from arachidonic acid, potentially promoting allergic reactions, inflammation, and atherosclerosis.</p>\",\"PeriodicalId\":18086,\"journal\":{\"name\":\"Lipids\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lipids\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/lipd.12444\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lipids","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/lipd.12444","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Exogenous oxidized phytosterol may modulate linoleic acid metabolism through upregulation of fatty acid desaturase in rats.
Previous in vitro studies have indicated that oxidized phytosterol (OPS) exhibits some toxicity; however, the harmful effects of OPS on fatty acid metabolism are not completely understood yet. Therefore, this study examined the effects of exogenous phytosterol (PS) and OPS on growth parameters and lipid metabolism in rats. Rats were provided with AIN-76 basal diet, basal diet +0.5% PS, or basal diet +0.5% OPS. We found that the level of cholesterol and triacylglycerols in the liver was significantly lower in OPS-fed rats than in basal diet-fed rats. The ratio of Δ6 desaturation index (20:3(n-6) + 20:4(n-6))/18:2(n-6) in the plasma was significantly higher in the OPS-fed rats than in the PS-fed rats. Additionally, the proportion of arachidonic acid (20:4) in the liver was significantly higher in the OPS-fed group compared with the control group. The mRNA expression levels of Δ6 and Δ5 desaturases were significantly higher in OPS-fed rats than in basal diet-fed rats, but remained unchanged in PS-fed rats. Moreover, the protein level of Δ6 desaturase was significantly higher in both PS- and OPS-fed rats compared with basal diet-fed rats, while the protein level of Δ5 desaturase tended to be higher only in OPS-fed rats than in basal diet-fed rats. Thus, exogenous OPS, but not PS, altered fatty acid composition through the upregulation of mRNA and protein levels of fatty acid desaturation enzymes in the liver. This indicates that exogenous OPS, unlike PS, may modulate the production of eicosanoids from arachidonic acid, potentially promoting allergic reactions, inflammation, and atherosclerosis.
期刊介绍:
Lipids is a journal of the American Oil Chemists'' Society (AOCS) that focuses on publishing high-quality peer-reviewed papers and invited reviews in the general area of lipid research, including chemistry, biochemistry, clinical nutrition, and metabolism. In addition, Lipids publishes papers establishing novel methods for addressing research questions in the field of lipid research.