{"title":"天线与头部距离对微波脑成像应用的影响分析。","authors":"Farhana Parveen, Parveen Wahid","doi":"10.1155/ijbi/8872566","DOIUrl":null,"url":null,"abstract":"<p><p>Wideband antennas are extensively used in many medical applications, which require the placement of the antenna on or near a human body. The performance of the antenna should remain compliant with the requirements of the target application when placed in front of the subject under investigation. Since the performance of an antenna varies when the distance from the subject is changed, the effect of varying the distance of a miniaturized wideband antipodal Vivaldi antenna from a numerical head model is analyzed in this work. The analyses can demonstrate whether the antenna performance and its effect on the head aptly comply with the requirements for the intended application of microwave brain imaging. It is observed that, when the antenna-head distance is increased, the background noise in the received signal is enhanced, whereas when the distance is reduced, the radiation-safety consideration on the head is affected. Hence, the optimum distance should provide a good compromise in terms of both signal receptibility by the antenna and radiation safety on the head. As the optimum antenna-to-head distance may vary with the change in antenna, measurement system, and the surrounding medium, this work presents a basic analysis procedure to find the appropriate antenna distance for the intended application.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2025 ","pages":"8872566"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12066184/pdf/","citationCount":"0","resultStr":"{\"title\":\"Analysis of the Effect of Antenna-to-Head Distance for Microwave Brain Imaging Applications.\",\"authors\":\"Farhana Parveen, Parveen Wahid\",\"doi\":\"10.1155/ijbi/8872566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wideband antennas are extensively used in many medical applications, which require the placement of the antenna on or near a human body. The performance of the antenna should remain compliant with the requirements of the target application when placed in front of the subject under investigation. Since the performance of an antenna varies when the distance from the subject is changed, the effect of varying the distance of a miniaturized wideband antipodal Vivaldi antenna from a numerical head model is analyzed in this work. The analyses can demonstrate whether the antenna performance and its effect on the head aptly comply with the requirements for the intended application of microwave brain imaging. It is observed that, when the antenna-head distance is increased, the background noise in the received signal is enhanced, whereas when the distance is reduced, the radiation-safety consideration on the head is affected. Hence, the optimum distance should provide a good compromise in terms of both signal receptibility by the antenna and radiation safety on the head. As the optimum antenna-to-head distance may vary with the change in antenna, measurement system, and the surrounding medium, this work presents a basic analysis procedure to find the appropriate antenna distance for the intended application.</p>\",\"PeriodicalId\":47063,\"journal\":{\"name\":\"International Journal of Biomedical Imaging\",\"volume\":\"2025 \",\"pages\":\"8872566\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12066184/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/ijbi/8872566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/ijbi/8872566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Analysis of the Effect of Antenna-to-Head Distance for Microwave Brain Imaging Applications.
Wideband antennas are extensively used in many medical applications, which require the placement of the antenna on or near a human body. The performance of the antenna should remain compliant with the requirements of the target application when placed in front of the subject under investigation. Since the performance of an antenna varies when the distance from the subject is changed, the effect of varying the distance of a miniaturized wideband antipodal Vivaldi antenna from a numerical head model is analyzed in this work. The analyses can demonstrate whether the antenna performance and its effect on the head aptly comply with the requirements for the intended application of microwave brain imaging. It is observed that, when the antenna-head distance is increased, the background noise in the received signal is enhanced, whereas when the distance is reduced, the radiation-safety consideration on the head is affected. Hence, the optimum distance should provide a good compromise in terms of both signal receptibility by the antenna and radiation safety on the head. As the optimum antenna-to-head distance may vary with the change in antenna, measurement system, and the surrounding medium, this work presents a basic analysis procedure to find the appropriate antenna distance for the intended application.
期刊介绍:
The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to):
Digital radiography and tomosynthesis
X-ray computed tomography (CT)
Magnetic resonance imaging (MRI)
Single photon emission computed tomography (SPECT)
Positron emission tomography (PET)
Ultrasound imaging
Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography
Neutron imaging for biomedical applications
Magnetic and optical spectroscopy, and optical biopsy
Optical, electron, scanning tunneling/atomic force microscopy
Small animal imaging
Functional, cellular, and molecular imaging
Imaging assays for screening and molecular analysis
Microarray image analysis and bioinformatics
Emerging biomedical imaging techniques
Imaging modality fusion
Biomedical imaging instrumentation
Biomedical image processing, pattern recognition, and analysis
Biomedical image visualization, compression, transmission, and storage
Imaging and modeling related to systems biology and systems biomedicine
Applied mathematics, applied physics, and chemistry related to biomedical imaging
Grid-enabling technology for biomedical imaging and informatics