周期性脉冲化疗的随机肿瘤-正常-免疫模型的消失和持续。

IF 2.3 4区 数学 Q2 BIOLOGY
Nabyl Bajja, Driss Seghir
{"title":"周期性脉冲化疗的随机肿瘤-正常-免疫模型的消失和持续。","authors":"Nabyl Bajja, Driss Seghir","doi":"10.1007/s00285-025-02215-y","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we introduced a stochastic tumor-normal-immune dynamical system with periodically pulsed chemotherapy to investigate the impact of environmental noise on tumor evolution. By utilizing theorems from impulsive stochastic differential equations, we analyzed tumor-free and globally positive solutions within the proposed framework. Our findings demonstrated that the expected solutions remained bounded. Additionally, we derived sufficient conditions for various tumor outcomes, including extinction, non-persistence in the mean, weak persistence in the mean, and stochastic persistence. Finally, we validated our results through comprehensive computer simulations.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"90 5","pages":"49"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extinction and persistence of a stochastic tumor-normal-immune model with periodically pulsed chemotherapy treatment.\",\"authors\":\"Nabyl Bajja, Driss Seghir\",\"doi\":\"10.1007/s00285-025-02215-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we introduced a stochastic tumor-normal-immune dynamical system with periodically pulsed chemotherapy to investigate the impact of environmental noise on tumor evolution. By utilizing theorems from impulsive stochastic differential equations, we analyzed tumor-free and globally positive solutions within the proposed framework. Our findings demonstrated that the expected solutions remained bounded. Additionally, we derived sufficient conditions for various tumor outcomes, including extinction, non-persistence in the mean, weak persistence in the mean, and stochastic persistence. Finally, we validated our results through comprehensive computer simulations.</p>\",\"PeriodicalId\":50148,\"journal\":{\"name\":\"Journal of Mathematical Biology\",\"volume\":\"90 5\",\"pages\":\"49\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00285-025-02215-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-025-02215-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们引入了一个随机肿瘤-正常-免疫动力系统与周期性脉冲化疗,以研究环境噪声对肿瘤演变的影响。利用脉冲随机微分方程的定理,我们分析了该框架内的无肿瘤解和全局正解。我们的研究结果表明,预期的解决方案仍然是有限的。此外,我们推导了各种肿瘤结果的充分条件,包括消失、平均非持续性、平均弱持续性和随机持续性。最后,通过全面的计算机模拟验证了我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extinction and persistence of a stochastic tumor-normal-immune model with periodically pulsed chemotherapy treatment.

In this paper, we introduced a stochastic tumor-normal-immune dynamical system with periodically pulsed chemotherapy to investigate the impact of environmental noise on tumor evolution. By utilizing theorems from impulsive stochastic differential equations, we analyzed tumor-free and globally positive solutions within the proposed framework. Our findings demonstrated that the expected solutions remained bounded. Additionally, we derived sufficient conditions for various tumor outcomes, including extinction, non-persistence in the mean, weak persistence in the mean, and stochastic persistence. Finally, we validated our results through comprehensive computer simulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
120
审稿时长
6 months
期刊介绍: The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena. Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信