卧床休息后姿势控制的神经运动改变。

IF 4.7 2区 医学 Q1 NEUROSCIENCES
Ramona Ritzmann, Christoph Centner, Luke Hughes, Janice Waldvogel, Uros Marusic
{"title":"卧床休息后姿势控制的神经运动改变。","authors":"Ramona Ritzmann, Christoph Centner, Luke Hughes, Janice Waldvogel, Uros Marusic","doi":"10.1113/JP285668","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic bed rest (BR) serves as a model for studying the effects of prolonged immobility on physiological and neuromotor functions, particularly postural control. Prolonged BR leads to significant deconditioning of postural balance control, characterized by increased sway path lengths, sway velocity and fall risk, independent of muscle strength. These changes are linked to neural adaptations at spinal and supraspinal levels, including structural and functional brain changes, such as alterations in grey and white matter, increased cerebellar activation, reduced spinal excitability and increased latencies within reflex circuitries. Additionally, BR disrupts sensory integration from proprioceptive, visual and vestibular systems, impairing postural stability. Visual reliance remains stable during BR, though decreased visual acuity and contrast sensitivity are noted. Moreover, BR-induced shifts in cerebrospinal fluid contribute to altered brain activity, impacting sensorimotor function. Vestibular system adaptations, including changes in vestibulospinal reflexes, further exacerbate balance impairments. Understanding these mechanisms is crucial for developing interventions to mitigate the adverse effects of BR on postural control and prevent prolonged recovery times or increased risk of injury. This review highlights the need for further research into the neural underpinnings of BR-induced postural instability, with a focus on sensory integration and neuroplasticity.</p>","PeriodicalId":50088,"journal":{"name":"Journal of Physiology-London","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuromotor changes in postural control following bed rest.\",\"authors\":\"Ramona Ritzmann, Christoph Centner, Luke Hughes, Janice Waldvogel, Uros Marusic\",\"doi\":\"10.1113/JP285668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chronic bed rest (BR) serves as a model for studying the effects of prolonged immobility on physiological and neuromotor functions, particularly postural control. Prolonged BR leads to significant deconditioning of postural balance control, characterized by increased sway path lengths, sway velocity and fall risk, independent of muscle strength. These changes are linked to neural adaptations at spinal and supraspinal levels, including structural and functional brain changes, such as alterations in grey and white matter, increased cerebellar activation, reduced spinal excitability and increased latencies within reflex circuitries. Additionally, BR disrupts sensory integration from proprioceptive, visual and vestibular systems, impairing postural stability. Visual reliance remains stable during BR, though decreased visual acuity and contrast sensitivity are noted. Moreover, BR-induced shifts in cerebrospinal fluid contribute to altered brain activity, impacting sensorimotor function. Vestibular system adaptations, including changes in vestibulospinal reflexes, further exacerbate balance impairments. Understanding these mechanisms is crucial for developing interventions to mitigate the adverse effects of BR on postural control and prevent prolonged recovery times or increased risk of injury. This review highlights the need for further research into the neural underpinnings of BR-induced postural instability, with a focus on sensory integration and neuroplasticity.</p>\",\"PeriodicalId\":50088,\"journal\":{\"name\":\"Journal of Physiology-London\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physiology-London\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1113/JP285668\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology-London","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/JP285668","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

长期卧床休息(BR)是研究长期不动对生理和神经运动功能,特别是姿势控制的影响的一个模型。长时间的BR会导致姿势平衡控制的严重失调,其特征是增加摇摆路径长度、摇摆速度和跌倒风险,与肌肉力量无关。这些变化与脊髓和棘上水平的神经适应有关,包括大脑结构和功能的变化,如灰质和白质的改变、小脑激活增加、脊髓兴奋性降低和反射回路潜伏期增加。此外,BR破坏本体感觉、视觉和前庭系统的感觉整合,损害体位稳定性。视觉依赖在BR期间保持稳定,尽管注意到视觉敏锐度和对比敏感度下降。此外,br诱导的脑脊液变化有助于改变脑活动,影响感觉运动功能。前庭系统的适应,包括前庭脊髓反射的改变,进一步加剧了平衡障碍。了解这些机制对于制定干预措施以减轻BR对姿势控制的不利影响、防止恢复时间延长或损伤风险增加至关重要。这篇综述强调需要进一步研究br诱导的姿势不稳定的神经基础,重点是感觉统合和神经可塑性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neuromotor changes in postural control following bed rest.

Chronic bed rest (BR) serves as a model for studying the effects of prolonged immobility on physiological and neuromotor functions, particularly postural control. Prolonged BR leads to significant deconditioning of postural balance control, characterized by increased sway path lengths, sway velocity and fall risk, independent of muscle strength. These changes are linked to neural adaptations at spinal and supraspinal levels, including structural and functional brain changes, such as alterations in grey and white matter, increased cerebellar activation, reduced spinal excitability and increased latencies within reflex circuitries. Additionally, BR disrupts sensory integration from proprioceptive, visual and vestibular systems, impairing postural stability. Visual reliance remains stable during BR, though decreased visual acuity and contrast sensitivity are noted. Moreover, BR-induced shifts in cerebrospinal fluid contribute to altered brain activity, impacting sensorimotor function. Vestibular system adaptations, including changes in vestibulospinal reflexes, further exacerbate balance impairments. Understanding these mechanisms is crucial for developing interventions to mitigate the adverse effects of BR on postural control and prevent prolonged recovery times or increased risk of injury. This review highlights the need for further research into the neural underpinnings of BR-induced postural instability, with a focus on sensory integration and neuroplasticity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physiology-London
Journal of Physiology-London 医学-神经科学
CiteScore
9.70
自引率
7.30%
发文量
817
审稿时长
2 months
期刊介绍: The Journal of Physiology publishes full-length original Research Papers and Techniques for Physiology, which are short papers aimed at disseminating new techniques for physiological research. Articles solicited by the Editorial Board include Perspectives, Symposium Reports and Topical Reviews, which highlight areas of special physiological interest. CrossTalk articles are short editorial-style invited articles framing a debate between experts in the field on controversial topics. Letters to the Editor and Journal Club articles are also published. All categories of papers are subjected to peer reivew. The Journal of Physiology welcomes submitted research papers in all areas of physiology. Authors should present original work that illustrates new physiological principles or mechanisms. Papers on work at the molecular level, at the level of the cell membrane, single cells, tissues or organs and on systems physiology are all acceptable. Theoretical papers and papers that use computational models to further our understanding of physiological processes will be considered if based on experimentally derived data and if the hypothesis advanced is directly amenable to experimental testing. While emphasis is on human and mammalian physiology, work on lower vertebrate or invertebrate preparations may be suitable if it furthers the understanding of the functioning of other organisms including mammals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信