Karina Moïn-Darbari, Daniel Paromov, Benoit-Antoine Bacon, Maxime Maheu, François Champoux
{"title":"舞者对眩晕的抵抗不能用前庭信号的普遍抑制来解释。","authors":"Karina Moïn-Darbari, Daniel Paromov, Benoit-Antoine Bacon, Maxime Maheu, François Champoux","doi":"10.1097/WNR.0000000000002160","DOIUrl":null,"url":null,"abstract":"<p><p>From a vestibular perspective, it is remarkable that dancers are often performing challenging tasks such as pirouettes, and yet manage to do so without falling. Some have suggested that dancers' resistance to vertigo may be explained by a generalized suppression of vestibular signaling. Here, we aimed to test this hypothesis by examining the impact of galvanic vestibular stimulation (GVS) on postural control in dancers. A total of 38 participants were recruited for this study and were divided into two groups: 19 dancers and 19 healthy controls. Postural control was assessed at baseline and during GVS. As expected, dancers exhibited better postural control, as assessed by a decrease in sway area, when compared to the control group in the baseline condition. However, contrary to expectations, dancers did not differ from controls during GVS. This confirms that dancers' resistance to vertigo cannot be explained by a generalized suppression of vestibular signaling. Rather, dancers may have developed a more accurate body representation due to top-down modulation of subcortical neuronal networks and may only be able to modify vestibular input during active movement.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":"36 7","pages":"378-381"},"PeriodicalIF":1.6000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dancers' resistance to vertigo cannot be explained by a generalized suppression of vestibular signaling.\",\"authors\":\"Karina Moïn-Darbari, Daniel Paromov, Benoit-Antoine Bacon, Maxime Maheu, François Champoux\",\"doi\":\"10.1097/WNR.0000000000002160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>From a vestibular perspective, it is remarkable that dancers are often performing challenging tasks such as pirouettes, and yet manage to do so without falling. Some have suggested that dancers' resistance to vertigo may be explained by a generalized suppression of vestibular signaling. Here, we aimed to test this hypothesis by examining the impact of galvanic vestibular stimulation (GVS) on postural control in dancers. A total of 38 participants were recruited for this study and were divided into two groups: 19 dancers and 19 healthy controls. Postural control was assessed at baseline and during GVS. As expected, dancers exhibited better postural control, as assessed by a decrease in sway area, when compared to the control group in the baseline condition. However, contrary to expectations, dancers did not differ from controls during GVS. This confirms that dancers' resistance to vertigo cannot be explained by a generalized suppression of vestibular signaling. Rather, dancers may have developed a more accurate body representation due to top-down modulation of subcortical neuronal networks and may only be able to modify vestibular input during active movement.</p>\",\"PeriodicalId\":19213,\"journal\":{\"name\":\"Neuroreport\",\"volume\":\"36 7\",\"pages\":\"378-381\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroreport\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/WNR.0000000000002160\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroreport","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/WNR.0000000000002160","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/9 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Dancers' resistance to vertigo cannot be explained by a generalized suppression of vestibular signaling.
From a vestibular perspective, it is remarkable that dancers are often performing challenging tasks such as pirouettes, and yet manage to do so without falling. Some have suggested that dancers' resistance to vertigo may be explained by a generalized suppression of vestibular signaling. Here, we aimed to test this hypothesis by examining the impact of galvanic vestibular stimulation (GVS) on postural control in dancers. A total of 38 participants were recruited for this study and were divided into two groups: 19 dancers and 19 healthy controls. Postural control was assessed at baseline and during GVS. As expected, dancers exhibited better postural control, as assessed by a decrease in sway area, when compared to the control group in the baseline condition. However, contrary to expectations, dancers did not differ from controls during GVS. This confirms that dancers' resistance to vertigo cannot be explained by a generalized suppression of vestibular signaling. Rather, dancers may have developed a more accurate body representation due to top-down modulation of subcortical neuronal networks and may only be able to modify vestibular input during active movement.
期刊介绍:
NeuroReport is a channel for rapid communication of new findings in neuroscience. It is a forum for the publication of short but complete reports of important studies that require very fast publication. Papers are accepted on the basis of the novelty of their finding, on their significance for neuroscience and on a clear need for rapid publication. Preliminary communications are not suitable for the Journal. Submitted articles undergo a preliminary review by the editor. Some articles may be returned to authors without further consideration. Those being considered for publication will undergo further assessment and peer-review by the editors and those invited to do so from a reviewer pool.
The core interest of the Journal is on studies that cast light on how the brain (and the whole of the nervous system) works.
We aim to give authors a decision on their submission within 2-5 weeks, and all accepted articles appear in the next issue to press.