脑发育过程中IRS-1的时空表达及其在神经干细胞分化中的作用

IF 3.3 4区 医学 Q2 NEUROSCIENCES
Junjiao Zhang, Xiao Li, Fan Zhang, Hongyuan Chu, Jingmin Wang, Ye Wu, Kai Gao, Yuwu Jiang
{"title":"脑发育过程中IRS-1的时空表达及其在神经干细胞分化中的作用","authors":"Junjiao Zhang, Xiao Li, Fan Zhang, Hongyuan Chu, Jingmin Wang, Ye Wu, Kai Gao, Yuwu Jiang","doi":"10.1007/s12017-025-08853-1","DOIUrl":null,"url":null,"abstract":"<p><p>Insulin receptor substrate 1 (IRS-1) is a key mediator of insulin signaling linked to focal cortical dysplasia. While previous studies have primarily focused on IRS-1 in peripheral tissues, its function in the central nervous system has remained largely unexplored. This study aimed to investigate the spatiotemporal expression patterns of IRS-1 protein in mouse cerebral cortex and human brain organoids, along with its role in neural development. In mice, Irs-1 expression was consistent throughout brain development, with notable localization in the ventricular/subventricular zone during early gestation and later in the outer cerebral cortex. In human brain organoids, IRS-1 was primarily found in rosette structures initially, shifting to the outer cortical layer as they matured. Knockdown of Irs-1 at embryonic day 14.5 via in-utero electroporation impaired neuronal migration, resulting in more neurons remaining in the intermediate zone compared to controls. Moreover, SH-SY5Y cells treated with isotretinoin exhibited a significant decrease in IRS-1 protein expression during maturation. RNA sequencing indicates an upregulation of neurodevelopment-related genes alongside a downregulation of the IRS-1. These findings underscore the significance of IRS-1 in brain development, particularly regarding neuronal migration and differentiation.</p>","PeriodicalId":19304,"journal":{"name":"NeuroMolecular Medicine","volume":"27 1","pages":"32"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal Expression of IRS-1 During Brain Development and its Role in Neural Stem Cell Differentiation.\",\"authors\":\"Junjiao Zhang, Xiao Li, Fan Zhang, Hongyuan Chu, Jingmin Wang, Ye Wu, Kai Gao, Yuwu Jiang\",\"doi\":\"10.1007/s12017-025-08853-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Insulin receptor substrate 1 (IRS-1) is a key mediator of insulin signaling linked to focal cortical dysplasia. While previous studies have primarily focused on IRS-1 in peripheral tissues, its function in the central nervous system has remained largely unexplored. This study aimed to investigate the spatiotemporal expression patterns of IRS-1 protein in mouse cerebral cortex and human brain organoids, along with its role in neural development. In mice, Irs-1 expression was consistent throughout brain development, with notable localization in the ventricular/subventricular zone during early gestation and later in the outer cerebral cortex. In human brain organoids, IRS-1 was primarily found in rosette structures initially, shifting to the outer cortical layer as they matured. Knockdown of Irs-1 at embryonic day 14.5 via in-utero electroporation impaired neuronal migration, resulting in more neurons remaining in the intermediate zone compared to controls. Moreover, SH-SY5Y cells treated with isotretinoin exhibited a significant decrease in IRS-1 protein expression during maturation. RNA sequencing indicates an upregulation of neurodevelopment-related genes alongside a downregulation of the IRS-1. These findings underscore the significance of IRS-1 in brain development, particularly regarding neuronal migration and differentiation.</p>\",\"PeriodicalId\":19304,\"journal\":{\"name\":\"NeuroMolecular Medicine\",\"volume\":\"27 1\",\"pages\":\"32\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroMolecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12017-025-08853-1\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroMolecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12017-025-08853-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

胰岛素受体底物1 (IRS-1)是与局灶性皮质发育不良相关的胰岛素信号传导的关键介质。虽然以前的研究主要集中在外周组织中的IRS-1,但其在中枢神经系统中的功能仍未被充分探索。本研究旨在探讨IRS-1蛋白在小鼠大脑皮层和人脑类器官中的时空表达模式及其在神经发育中的作用。在小鼠中,ir -1的表达在整个大脑发育过程中是一致的,在妊娠早期和后来的大脑外皮层中,在心室/室下区有明显的定位。在人脑类器官中,IRS-1最初主要存在于玫瑰花结结构中,随着它们的成熟转移到外皮层。在胚胎第14.5天通过子宫内电穿孔敲除ir -1会损害神经元迁移,导致与对照组相比,更多的神经元留在中间区。此外,异维甲酸处理的SH-SY5Y细胞在成熟过程中表现出IRS-1蛋白表达的显著降低。RNA测序显示神经发育相关基因上调,同时IRS-1下调。这些发现强调了IRS-1在大脑发育中的重要性,特别是在神经元迁移和分化方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatiotemporal Expression of IRS-1 During Brain Development and its Role in Neural Stem Cell Differentiation.

Insulin receptor substrate 1 (IRS-1) is a key mediator of insulin signaling linked to focal cortical dysplasia. While previous studies have primarily focused on IRS-1 in peripheral tissues, its function in the central nervous system has remained largely unexplored. This study aimed to investigate the spatiotemporal expression patterns of IRS-1 protein in mouse cerebral cortex and human brain organoids, along with its role in neural development. In mice, Irs-1 expression was consistent throughout brain development, with notable localization in the ventricular/subventricular zone during early gestation and later in the outer cerebral cortex. In human brain organoids, IRS-1 was primarily found in rosette structures initially, shifting to the outer cortical layer as they matured. Knockdown of Irs-1 at embryonic day 14.5 via in-utero electroporation impaired neuronal migration, resulting in more neurons remaining in the intermediate zone compared to controls. Moreover, SH-SY5Y cells treated with isotretinoin exhibited a significant decrease in IRS-1 protein expression during maturation. RNA sequencing indicates an upregulation of neurodevelopment-related genes alongside a downregulation of the IRS-1. These findings underscore the significance of IRS-1 in brain development, particularly regarding neuronal migration and differentiation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NeuroMolecular Medicine
NeuroMolecular Medicine 医学-神经科学
CiteScore
7.10
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: NeuroMolecular Medicine publishes cutting-edge original research articles and critical reviews on the molecular and biochemical basis of neurological disorders. Studies range from genetic analyses of human populations to animal and cell culture models of neurological disorders. Emerging findings concerning the identification of genetic aberrancies and their pathogenic mechanisms at the molecular and cellular levels will be included. Also covered are experimental analyses of molecular cascades involved in the development and adult plasticity of the nervous system, in neurological dysfunction, and in neuronal degeneration and repair. NeuroMolecular Medicine encompasses basic research in the fields of molecular genetics, signal transduction, plasticity, and cell death. The information published in NEMM will provide a window into the future of molecular medicine for the nervous system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信