{"title":"外泌体驱动的神经制药:为新一代疗法打开血脑屏障。","authors":"Sepehr Mehdizadeh, Mobin Mamaghani, Somayyeh Hassanikia, Younes Pilehvar, Yavuz Nuri Ertas","doi":"10.1186/s12951-025-03352-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The blood-brain barrier (BBB) presents a formidable challenge in neuropharmacology, limiting the delivery of therapeutic agents to the brain. Exosomes, nature's nanocarriers, have emerged as a promising solution due to their biocompatibility, low immunogenicity, and innate ability to traverse the BBB. A thorough examination of BBB anatomy and physiology reveals the complexities of neurological drug delivery and underscores the limitations of conventional methods.</p><p><strong>Main body: </strong>This review explores the potential of exosome-powered neuropharmaceutics, highlighting their structural and functional properties, biogenesis, and mechanisms of release. Their intrinsic advantages in drug delivery, including enhanced stability and efficient cellular uptake, are discussed in detail. Exosomes naturally overcome BBB barriers through specific translocation mechanisms, making them a compelling vehicle for targeted brain therapies. Advances in engineering strategies, such as genetic and biochemical modifications, drug loading techniques, and specificity enhancement, further bolster their therapeutic potential. Exosome-based approaches hold immense promise for treating a spectrum of neurological disorders, including Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), brain tumors, stroke, and psychiatric conditions.</p><p><strong>Conclusion: </strong>By leveraging their innate properties and engineering innovations, exosomes offer a versatile platform for precision neurotherapeutics. Despite their promise, challenges remain in clinical translation, including large-scale production, standardization, and regulatory considerations. Future research directions in exosome nanobiotechnology aim to refine these therapeutic strategies, unlocking new avenues for treating neurological diseases. This review underscores the transformative impact of exosome-based drug delivery, paving the way for next-generation therapies that can effectively penetrate the BBB and revolutionize neuropharmacology.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"329"},"PeriodicalIF":10.6000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12049023/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exosome-powered neuropharmaceutics: unlocking the blood-brain barrier for next-gen therapies.\",\"authors\":\"Sepehr Mehdizadeh, Mobin Mamaghani, Somayyeh Hassanikia, Younes Pilehvar, Yavuz Nuri Ertas\",\"doi\":\"10.1186/s12951-025-03352-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The blood-brain barrier (BBB) presents a formidable challenge in neuropharmacology, limiting the delivery of therapeutic agents to the brain. Exosomes, nature's nanocarriers, have emerged as a promising solution due to their biocompatibility, low immunogenicity, and innate ability to traverse the BBB. A thorough examination of BBB anatomy and physiology reveals the complexities of neurological drug delivery and underscores the limitations of conventional methods.</p><p><strong>Main body: </strong>This review explores the potential of exosome-powered neuropharmaceutics, highlighting their structural and functional properties, biogenesis, and mechanisms of release. Their intrinsic advantages in drug delivery, including enhanced stability and efficient cellular uptake, are discussed in detail. Exosomes naturally overcome BBB barriers through specific translocation mechanisms, making them a compelling vehicle for targeted brain therapies. Advances in engineering strategies, such as genetic and biochemical modifications, drug loading techniques, and specificity enhancement, further bolster their therapeutic potential. Exosome-based approaches hold immense promise for treating a spectrum of neurological disorders, including Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), brain tumors, stroke, and psychiatric conditions.</p><p><strong>Conclusion: </strong>By leveraging their innate properties and engineering innovations, exosomes offer a versatile platform for precision neurotherapeutics. Despite their promise, challenges remain in clinical translation, including large-scale production, standardization, and regulatory considerations. Future research directions in exosome nanobiotechnology aim to refine these therapeutic strategies, unlocking new avenues for treating neurological diseases. This review underscores the transformative impact of exosome-based drug delivery, paving the way for next-generation therapies that can effectively penetrate the BBB and revolutionize neuropharmacology.</p>\",\"PeriodicalId\":16383,\"journal\":{\"name\":\"Journal of Nanobiotechnology\",\"volume\":\"23 1\",\"pages\":\"329\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12049023/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12951-025-03352-8\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03352-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Exosome-powered neuropharmaceutics: unlocking the blood-brain barrier for next-gen therapies.
Background: The blood-brain barrier (BBB) presents a formidable challenge in neuropharmacology, limiting the delivery of therapeutic agents to the brain. Exosomes, nature's nanocarriers, have emerged as a promising solution due to their biocompatibility, low immunogenicity, and innate ability to traverse the BBB. A thorough examination of BBB anatomy and physiology reveals the complexities of neurological drug delivery and underscores the limitations of conventional methods.
Main body: This review explores the potential of exosome-powered neuropharmaceutics, highlighting their structural and functional properties, biogenesis, and mechanisms of release. Their intrinsic advantages in drug delivery, including enhanced stability and efficient cellular uptake, are discussed in detail. Exosomes naturally overcome BBB barriers through specific translocation mechanisms, making them a compelling vehicle for targeted brain therapies. Advances in engineering strategies, such as genetic and biochemical modifications, drug loading techniques, and specificity enhancement, further bolster their therapeutic potential. Exosome-based approaches hold immense promise for treating a spectrum of neurological disorders, including Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), brain tumors, stroke, and psychiatric conditions.
Conclusion: By leveraging their innate properties and engineering innovations, exosomes offer a versatile platform for precision neurotherapeutics. Despite their promise, challenges remain in clinical translation, including large-scale production, standardization, and regulatory considerations. Future research directions in exosome nanobiotechnology aim to refine these therapeutic strategies, unlocking new avenues for treating neurological diseases. This review underscores the transformative impact of exosome-based drug delivery, paving the way for next-generation therapies that can effectively penetrate the BBB and revolutionize neuropharmacology.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.