Romina Aliaga-Gálvez, Mario Felipe Gutiérrez, Benjamín Valenzuela, Saulo Geraldeli, Gabriel Abuna, Carolina Inostroza, Cristian Bravo, Gabriel Cochinski, Alessandro D Loguercio
{"title":"将掺铜的生物活性玻璃纳米颗粒掺入树脂复合材料中,提高了树脂复合材料的生物性能、力学性能和粘附性能。","authors":"Romina Aliaga-Gálvez, Mario Felipe Gutiérrez, Benjamín Valenzuela, Saulo Geraldeli, Gabriel Abuna, Carolina Inostroza, Cristian Bravo, Gabriel Cochinski, Alessandro D Loguercio","doi":"10.3290/j.jad.c_2014","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aims to develop and characterize copper-doped bioactive glass nanoparticles (BG/CuNp), and to evaluate the effects of their addition into a resin composite on antimicrobial activity (AMA), cytotoxicity (CTX), ultimate tensile strength (UTS), Knoop microhardness (KHN), as well as immediate resin-dentin microtensile bond strength (μTBS), nanoleakage (NL) and in-situ degree of conversion (DC).</p><p><strong>Materials and methods: </strong>BG/CuNp were added to a resin composite at different concentrations (0% [control]; 5, 10 and 20 wt%). The AMA was evaluated against Streptococcus mutans. For CTX, the Gingival mesenchymal stem cells (GMSC) cell line was used. For UTS and KHN, specimens were tested after 24 h and 28 days. For bonding evaluation, a universal adhesive was applied on flat dentin surfaces, experimental resin composite build-ups were prepared, and specimens were sectioned to obtain resin-dentin sticks. These were evaluated for μTBS, NL and DC after water storage. Data were submitted to statistical analyses (α = 0.05).</p><p><strong>Results: </strong>The addition of 5% and 10% of BG/CuNp increases AMA (P 0.05), while the CTX remained unchanged with resin-containing BG/CuNp (P > 0.05). UTS and KHN remained stable with the addition of 5% and 10% of BG/CuNp at 24 h, but showed significantly higher values compared to the control after 28 d (P 0.05). μTBS and in-situ DC remained unchanged with BG/CuNp addition, regardless of the concentration added. However, significantly lower NL was observed for BG/CuNp groups (P 0.05).</p><p><strong>Conclusion: </strong>The addition of BG/CuNp in the tested concentrations into a resin composite may be an alternative to provide antimicrobial activity and improve the integrity of the hybrid layer, without compromising biological, adhesives and mechanical properties.</p>","PeriodicalId":94234,"journal":{"name":"The journal of adhesive dentistry","volume":"27 ","pages":"103-114"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12057575/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Incorporation of Copper-Doped Bioactive Glass Nanoparticles into Resin Composites Improves Their Biological, Mechanical and Adhesive Properties.\",\"authors\":\"Romina Aliaga-Gálvez, Mario Felipe Gutiérrez, Benjamín Valenzuela, Saulo Geraldeli, Gabriel Abuna, Carolina Inostroza, Cristian Bravo, Gabriel Cochinski, Alessandro D Loguercio\",\"doi\":\"10.3290/j.jad.c_2014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This study aims to develop and characterize copper-doped bioactive glass nanoparticles (BG/CuNp), and to evaluate the effects of their addition into a resin composite on antimicrobial activity (AMA), cytotoxicity (CTX), ultimate tensile strength (UTS), Knoop microhardness (KHN), as well as immediate resin-dentin microtensile bond strength (μTBS), nanoleakage (NL) and in-situ degree of conversion (DC).</p><p><strong>Materials and methods: </strong>BG/CuNp were added to a resin composite at different concentrations (0% [control]; 5, 10 and 20 wt%). The AMA was evaluated against Streptococcus mutans. For CTX, the Gingival mesenchymal stem cells (GMSC) cell line was used. For UTS and KHN, specimens were tested after 24 h and 28 days. For bonding evaluation, a universal adhesive was applied on flat dentin surfaces, experimental resin composite build-ups were prepared, and specimens were sectioned to obtain resin-dentin sticks. These were evaluated for μTBS, NL and DC after water storage. Data were submitted to statistical analyses (α = 0.05).</p><p><strong>Results: </strong>The addition of 5% and 10% of BG/CuNp increases AMA (P 0.05), while the CTX remained unchanged with resin-containing BG/CuNp (P > 0.05). UTS and KHN remained stable with the addition of 5% and 10% of BG/CuNp at 24 h, but showed significantly higher values compared to the control after 28 d (P 0.05). μTBS and in-situ DC remained unchanged with BG/CuNp addition, regardless of the concentration added. However, significantly lower NL was observed for BG/CuNp groups (P 0.05).</p><p><strong>Conclusion: </strong>The addition of BG/CuNp in the tested concentrations into a resin composite may be an alternative to provide antimicrobial activity and improve the integrity of the hybrid layer, without compromising biological, adhesives and mechanical properties.</p>\",\"PeriodicalId\":94234,\"journal\":{\"name\":\"The journal of adhesive dentistry\",\"volume\":\"27 \",\"pages\":\"103-114\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12057575/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The journal of adhesive dentistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3290/j.jad.c_2014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The journal of adhesive dentistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3290/j.jad.c_2014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Incorporation of Copper-Doped Bioactive Glass Nanoparticles into Resin Composites Improves Their Biological, Mechanical and Adhesive Properties.
Purpose: This study aims to develop and characterize copper-doped bioactive glass nanoparticles (BG/CuNp), and to evaluate the effects of their addition into a resin composite on antimicrobial activity (AMA), cytotoxicity (CTX), ultimate tensile strength (UTS), Knoop microhardness (KHN), as well as immediate resin-dentin microtensile bond strength (μTBS), nanoleakage (NL) and in-situ degree of conversion (DC).
Materials and methods: BG/CuNp were added to a resin composite at different concentrations (0% [control]; 5, 10 and 20 wt%). The AMA was evaluated against Streptococcus mutans. For CTX, the Gingival mesenchymal stem cells (GMSC) cell line was used. For UTS and KHN, specimens were tested after 24 h and 28 days. For bonding evaluation, a universal adhesive was applied on flat dentin surfaces, experimental resin composite build-ups were prepared, and specimens were sectioned to obtain resin-dentin sticks. These were evaluated for μTBS, NL and DC after water storage. Data were submitted to statistical analyses (α = 0.05).
Results: The addition of 5% and 10% of BG/CuNp increases AMA (P 0.05), while the CTX remained unchanged with resin-containing BG/CuNp (P > 0.05). UTS and KHN remained stable with the addition of 5% and 10% of BG/CuNp at 24 h, but showed significantly higher values compared to the control after 28 d (P 0.05). μTBS and in-situ DC remained unchanged with BG/CuNp addition, regardless of the concentration added. However, significantly lower NL was observed for BG/CuNp groups (P 0.05).
Conclusion: The addition of BG/CuNp in the tested concentrations into a resin composite may be an alternative to provide antimicrobial activity and improve the integrity of the hybrid layer, without compromising biological, adhesives and mechanical properties.