基于深度学习的自动舌头分析系统辅助中医诊断。

IF 3.2 3区 医学 Q2 PHYSIOLOGY
Frontiers in Physiology Pub Date : 2025-04-28 eCollection Date: 2025-01-01 DOI:10.3389/fphys.2025.1559389
Tingnan Chen, Yutong Chen, Zili Zhou, Ying Zhu, Ling He, Jing Zhang
{"title":"基于深度学习的自动舌头分析系统辅助中医诊断。","authors":"Tingnan Chen, Yutong Chen, Zili Zhou, Ying Zhu, Ling He, Jing Zhang","doi":"10.3389/fphys.2025.1559389","DOIUrl":null,"url":null,"abstract":"<p><p>This study proposes an automated tongue analysis system that combines deep learning with traditional Chinese medicine to enhance the accuracy and objectivity of tongue diagnosis. The system includes a hardware device to provide a stable acquisition environment, an improved semi-supervised learning segmentation algorithm based on U2net, a high-performance colour correction module for standardising the segmented images, and a tongue image analysis algorithm that fuses different features according to the characteristics of each feature of the TCM tongue image. Experimental results demonstrate the system's performance and robustness in feature extraction and classification. The proposed methods ensure consistency and reliability in tongue analysis, addressing key challenges in traditional practices and providing a foundation for future correlation studies with endoscopic findings.</p>","PeriodicalId":12477,"journal":{"name":"Frontiers in Physiology","volume":"16 ","pages":"1559389"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12066954/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep learning-based automated tongue analysis system for assisted Chinese medicine diagnosis.\",\"authors\":\"Tingnan Chen, Yutong Chen, Zili Zhou, Ying Zhu, Ling He, Jing Zhang\",\"doi\":\"10.3389/fphys.2025.1559389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study proposes an automated tongue analysis system that combines deep learning with traditional Chinese medicine to enhance the accuracy and objectivity of tongue diagnosis. The system includes a hardware device to provide a stable acquisition environment, an improved semi-supervised learning segmentation algorithm based on U2net, a high-performance colour correction module for standardising the segmented images, and a tongue image analysis algorithm that fuses different features according to the characteristics of each feature of the TCM tongue image. Experimental results demonstrate the system's performance and robustness in feature extraction and classification. The proposed methods ensure consistency and reliability in tongue analysis, addressing key challenges in traditional practices and providing a foundation for future correlation studies with endoscopic findings.</p>\",\"PeriodicalId\":12477,\"journal\":{\"name\":\"Frontiers in Physiology\",\"volume\":\"16 \",\"pages\":\"1559389\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12066954/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fphys.2025.1559389\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fphys.2025.1559389","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种将深度学习与中医相结合的自动舌头分析系统,以提高舌头诊断的准确性和客观性。该系统包括提供稳定采集环境的硬件设备、基于U2net的改进半监督学习分割算法、用于分割图像标准化的高性能色彩校正模块以及根据中医舌图像各特征特征融合不同特征的舌图像分析算法。实验结果表明,该系统在特征提取和分类方面具有良好的鲁棒性。所提出的方法确保了舌头分析的一致性和可靠性,解决了传统实践中的关键挑战,并为未来与内窥镜结果的相关性研究奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning-based automated tongue analysis system for assisted Chinese medicine diagnosis.

This study proposes an automated tongue analysis system that combines deep learning with traditional Chinese medicine to enhance the accuracy and objectivity of tongue diagnosis. The system includes a hardware device to provide a stable acquisition environment, an improved semi-supervised learning segmentation algorithm based on U2net, a high-performance colour correction module for standardising the segmented images, and a tongue image analysis algorithm that fuses different features according to the characteristics of each feature of the TCM tongue image. Experimental results demonstrate the system's performance and robustness in feature extraction and classification. The proposed methods ensure consistency and reliability in tongue analysis, addressing key challenges in traditional practices and providing a foundation for future correlation studies with endoscopic findings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
5.00%
发文量
2608
审稿时长
14 weeks
期刊介绍: Frontiers in Physiology is a leading journal in its field, publishing rigorously peer-reviewed research on the physiology of living systems, from the subcellular and molecular domains to the intact organism, and its interaction with the environment. Field Chief Editor George E. Billman at the Ohio State University Columbus is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信