水稻转录组学和代谢组学的协同反应揭示了木质素为基础的物理屏障是非寄主抗锈菌的关键机制。

IF 4 2区 生物学 Q1 GENETICS & HEREDITY
PLoS Genetics Pub Date : 2025-05-09 eCollection Date: 2025-05-01 DOI:10.1371/journal.pgen.1011679
Ce Zhang, Liru Jian, Tao Guan, Yiping Wang, Huihui Pang, Yiqian Xu, Yaoyao Xing, Jiawen Wang, Zhensheng Kang, Jing Zhao
{"title":"水稻转录组学和代谢组学的协同反应揭示了木质素为基础的物理屏障是非寄主抗锈菌的关键机制。","authors":"Ce Zhang, Liru Jian, Tao Guan, Yiping Wang, Huihui Pang, Yiqian Xu, Yaoyao Xing, Jiawen Wang, Zhensheng Kang, Jing Zhao","doi":"10.1371/journal.pgen.1011679","DOIUrl":null,"url":null,"abstract":"<p><p>Nonhost resistance (NHR) serves as a fundamental defense response in plants against non-adapted pathogens, yet its underlying molecular mechanisms remain poorly understood. This study investigates the rice-Pst (Puccinia striiformis f. sp. tritici) interaction using integrated transcriptomic and metabolomic analyses to unravel the temporal dynamics of gene expression and metabolite changes associated with NHR. Our findings reveal a temporally coordinated activation of defense responses, with early induction of receptor-like kinases (RLKs) and hypersensitive response proteins, followed by later activation of jasmonic acid and systemic acquired resistance pathways, along with the accumulation of amino acids and other phenolic compounds. Notably, metabolic pathways related to cell wall reinforcement were significantly upregulated during Pst infection, highlighted by enhanced lignin biosynthesis (phenylpropanoid pathway), nucleotide sugar metabolism, and tryptophan pathways. Rice mutants deficient in genes involved in lignin biosynthesis (OsPAL3, Os4CL3, Os4CL5, and OsCCoAOMT) displayed reduced lignin deposition at infection sites and compromised resistance to Pst, underscoring a critical role of lignin-based physical barriers in NHR. This study provides novel insights into the molecular framework of rice NHR, emphasizing the pivotal role of structural defenses in plant immunity.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 5","pages":"e1011679"},"PeriodicalIF":4.0000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coordinated transcriptomic and metabolomic responses in rice reveal lignin-based physical barriers as key mechanisms of nonhost resistance to rust fungi.\",\"authors\":\"Ce Zhang, Liru Jian, Tao Guan, Yiping Wang, Huihui Pang, Yiqian Xu, Yaoyao Xing, Jiawen Wang, Zhensheng Kang, Jing Zhao\",\"doi\":\"10.1371/journal.pgen.1011679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nonhost resistance (NHR) serves as a fundamental defense response in plants against non-adapted pathogens, yet its underlying molecular mechanisms remain poorly understood. This study investigates the rice-Pst (Puccinia striiformis f. sp. tritici) interaction using integrated transcriptomic and metabolomic analyses to unravel the temporal dynamics of gene expression and metabolite changes associated with NHR. Our findings reveal a temporally coordinated activation of defense responses, with early induction of receptor-like kinases (RLKs) and hypersensitive response proteins, followed by later activation of jasmonic acid and systemic acquired resistance pathways, along with the accumulation of amino acids and other phenolic compounds. Notably, metabolic pathways related to cell wall reinforcement were significantly upregulated during Pst infection, highlighted by enhanced lignin biosynthesis (phenylpropanoid pathway), nucleotide sugar metabolism, and tryptophan pathways. Rice mutants deficient in genes involved in lignin biosynthesis (OsPAL3, Os4CL3, Os4CL5, and OsCCoAOMT) displayed reduced lignin deposition at infection sites and compromised resistance to Pst, underscoring a critical role of lignin-based physical barriers in NHR. This study provides novel insights into the molecular framework of rice NHR, emphasizing the pivotal role of structural defenses in plant immunity.</p>\",\"PeriodicalId\":49007,\"journal\":{\"name\":\"PLoS Genetics\",\"volume\":\"21 5\",\"pages\":\"e1011679\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pgen.1011679\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1011679","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

非宿主抗性(NHR)是植物对非适应性病原体的基本防御反应,但其潜在的分子机制尚不清楚。本研究利用整合转录组学和代谢组学分析研究了水稻-小麦纹状锈菌(pst)的相互作用,揭示了基因表达和代谢物变化与NHR相关的时间动态。我们的研究结果揭示了防御反应的时间协调激活,早期诱导受体样激酶(RLKs)和超敏反应蛋白,随后茉莉酸和全身获得性耐药途径的激活,以及氨基酸和其他酚类化合物的积累。值得注意的是,在Pst感染期间,与细胞壁强化相关的代谢途径显著上调,突出表现为木质素生物合成(苯丙素途径)、核苷酸糖代谢和色氨酸途径的增强。缺乏木质素生物合成相关基因(OsPAL3、Os4CL3、Os4CL5和OsCCoAOMT)的水稻突变体在感染部位木质素沉积减少,对Pst的抗性降低,强调了木质素为基础的物理屏障在NHR中的关键作用。该研究为水稻NHR的分子框架提供了新的见解,强调了结构防御在植物免疫中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coordinated transcriptomic and metabolomic responses in rice reveal lignin-based physical barriers as key mechanisms of nonhost resistance to rust fungi.

Nonhost resistance (NHR) serves as a fundamental defense response in plants against non-adapted pathogens, yet its underlying molecular mechanisms remain poorly understood. This study investigates the rice-Pst (Puccinia striiformis f. sp. tritici) interaction using integrated transcriptomic and metabolomic analyses to unravel the temporal dynamics of gene expression and metabolite changes associated with NHR. Our findings reveal a temporally coordinated activation of defense responses, with early induction of receptor-like kinases (RLKs) and hypersensitive response proteins, followed by later activation of jasmonic acid and systemic acquired resistance pathways, along with the accumulation of amino acids and other phenolic compounds. Notably, metabolic pathways related to cell wall reinforcement were significantly upregulated during Pst infection, highlighted by enhanced lignin biosynthesis (phenylpropanoid pathway), nucleotide sugar metabolism, and tryptophan pathways. Rice mutants deficient in genes involved in lignin biosynthesis (OsPAL3, Os4CL3, Os4CL5, and OsCCoAOMT) displayed reduced lignin deposition at infection sites and compromised resistance to Pst, underscoring a critical role of lignin-based physical barriers in NHR. This study provides novel insights into the molecular framework of rice NHR, emphasizing the pivotal role of structural defenses in plant immunity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Genetics
PLoS Genetics GENETICS & HEREDITY-
自引率
2.20%
发文量
438
期刊介绍: PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill). Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信