António Machado, Duarte Toubarro, José Baptista, Eduardo Tejera, José M Álvarez-Suárez
{"title":"选择蜂蜜作为一个多方面的抗菌剂:化合物,机制和研究挑战的回顾。","authors":"António Machado, Duarte Toubarro, José Baptista, Eduardo Tejera, José M Álvarez-Suárez","doi":"10.1080/17460913.2025.2498233","DOIUrl":null,"url":null,"abstract":"<p><p>Honey, derived from floral nectar, has been valued for its nutritional and therapeutic properties, with recent studies emphasizing its broad-spectrum antimicrobial potential, especially against antimicrobial resistance (AMR). Honey's antimicrobial activity stems from its unique composition, including high sugar content, low pH, and bioactive compounds like hydrogen peroxide, methylglyoxal (MGO), and phenolic compounds. Distinct honey types, such as Manuka, Sidr, and Tualang, demonstrate varying antimicrobial effects based on their botanical and geographical origins. Manuka honey, rich in MGO, is notably effective against multidrug-resistant pathogens, while Sidr and heather honeys excel in biofilm inhibition and antioxidative properties. Bioactive components, including phenolics, flavonoids, enzymes, and antimicrobial peptides, disrupt microbial membranes, inhibit metabolic pathways, and induce oxidative stress. Advanced analytical techniques like HPLC and GC-MS have identified these compounds, though gaps remain in understanding secondary metabolites and synergistic actions. This review highlights honey's potential as a sustainable antimicrobial resource, emphasizing the need for standardization, clinical validation, and interdisciplinary research. Honey represents a promising solution to AMR and offers opportunities for integration into modern medicine and healthcare strategies.</p>","PeriodicalId":12773,"journal":{"name":"Future microbiology","volume":" ","pages":"1-22"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selected honey as a multifaceted antimicrobial agent: review of compounds, mechanisms, and research challenges.\",\"authors\":\"António Machado, Duarte Toubarro, José Baptista, Eduardo Tejera, José M Álvarez-Suárez\",\"doi\":\"10.1080/17460913.2025.2498233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Honey, derived from floral nectar, has been valued for its nutritional and therapeutic properties, with recent studies emphasizing its broad-spectrum antimicrobial potential, especially against antimicrobial resistance (AMR). Honey's antimicrobial activity stems from its unique composition, including high sugar content, low pH, and bioactive compounds like hydrogen peroxide, methylglyoxal (MGO), and phenolic compounds. Distinct honey types, such as Manuka, Sidr, and Tualang, demonstrate varying antimicrobial effects based on their botanical and geographical origins. Manuka honey, rich in MGO, is notably effective against multidrug-resistant pathogens, while Sidr and heather honeys excel in biofilm inhibition and antioxidative properties. Bioactive components, including phenolics, flavonoids, enzymes, and antimicrobial peptides, disrupt microbial membranes, inhibit metabolic pathways, and induce oxidative stress. Advanced analytical techniques like HPLC and GC-MS have identified these compounds, though gaps remain in understanding secondary metabolites and synergistic actions. This review highlights honey's potential as a sustainable antimicrobial resource, emphasizing the need for standardization, clinical validation, and interdisciplinary research. Honey represents a promising solution to AMR and offers opportunities for integration into modern medicine and healthcare strategies.</p>\",\"PeriodicalId\":12773,\"journal\":{\"name\":\"Future microbiology\",\"volume\":\" \",\"pages\":\"1-22\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/17460913.2025.2498233\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17460913.2025.2498233","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Selected honey as a multifaceted antimicrobial agent: review of compounds, mechanisms, and research challenges.
Honey, derived from floral nectar, has been valued for its nutritional and therapeutic properties, with recent studies emphasizing its broad-spectrum antimicrobial potential, especially against antimicrobial resistance (AMR). Honey's antimicrobial activity stems from its unique composition, including high sugar content, low pH, and bioactive compounds like hydrogen peroxide, methylglyoxal (MGO), and phenolic compounds. Distinct honey types, such as Manuka, Sidr, and Tualang, demonstrate varying antimicrobial effects based on their botanical and geographical origins. Manuka honey, rich in MGO, is notably effective against multidrug-resistant pathogens, while Sidr and heather honeys excel in biofilm inhibition and antioxidative properties. Bioactive components, including phenolics, flavonoids, enzymes, and antimicrobial peptides, disrupt microbial membranes, inhibit metabolic pathways, and induce oxidative stress. Advanced analytical techniques like HPLC and GC-MS have identified these compounds, though gaps remain in understanding secondary metabolites and synergistic actions. This review highlights honey's potential as a sustainable antimicrobial resource, emphasizing the need for standardization, clinical validation, and interdisciplinary research. Honey represents a promising solution to AMR and offers opportunities for integration into modern medicine and healthcare strategies.
期刊介绍:
Future Microbiology delivers essential information in concise, at-a-glance article formats. Key advances in the field are reported and analyzed by international experts, providing an authoritative but accessible forum for this increasingly important and vast area of research.